论文部分内容阅读
[摘要]全国组织干部学院E区屋面穹顶钢结构及玻璃幕墙、悬索预应力钢结构层施工,充分运用虚拟仿真施工技术,优化施工方案,进行空间张弦结构施工仿真计算,在确保工程结构施工和使用安全的同时,圆满解决了工期紧张的难题,节能环保,节约施工成本,创造了良好的经济和社会效益。
[关键词] 虚拟;仿真;穹顶;悬索预应力;玻璃幕墙
中图分类号:TU74 文献标识码:A 文章编号:
(一)工程概况
全国组织干部学院E区结构设计复杂,采用型钢混凝土框架-剪力墙混合结构、钢桁架结构、预应力悬索钢结构和穹顶钢结构等多种结构形式。
1屋面穹顶钢结构采用全隐框玻璃幕墙,共约3000 m2,幕墙玻璃采用8+1.52PVB+8mm和10+1.52PVB+10mm两种钢化夹胶玻璃,穹顶最顶部水平位置采用10+1.52PVB+10mm玻璃,共计32块;开启扇玻璃共3排,即第8排、第9排和最底部1排,共计144块;其它玻璃共计476块,合计穹顶夹胶玻璃为652块,每块玻璃面积约4.0m2至5.3 m2不等,玻璃自重约250㎏/块。
2 屋面穹顶高42.3m,施工中设计图纸变更,在E区钢桁架层与屋面穹顶之间增加一层悬索预应力钢结构层,即多功能厅(二层)上增加屋面花园平台(五层)。
悬索预应力钢结构平台(图4中红色虚线部分)整体形状为圆环形,由24榀钢桁架以15°角度成放射状均匀布置,圆环直径28.90m,内圆环镂空,直径7.30m,桁架高1.80m,上下弦为焊接H型钢,中间为三根无缝钢管与之焊接相连,每榀重量为6.1t,长10.7m。结构的下层由环向拉索和径向拉索组成,构成稳定的空间结构受力体系。
3、E区屋面造型独特,穹顶钢结构及玻璃幕墙、悬索预应力钢结构层施工复杂,需利用虚拟仿真施工技术,对其施工及各阶段受力情况、安装精度、构件尺寸等进行详细的分析研究,并优化设计、施工方案,以达到最好的工程效果。
3.1 为达到屋面穹顶完美的半球体效果,利用仿真技术,通过建立三维模型,确定玻璃幕墙空间分格尺寸,逐一确定每块玻璃的具体加工、安装尺寸;
3.2 施工前,为确保悬索预应力钢结构质量安全可靠,对空间张弦结构施工进行仿真计算,模拟悬索预应力张拉,确保整个钢平台的施工万无一失;
3.3 为确保原竣工日期的实现,项目部成立QC小组进行现场攻关,利用虚拟仿真施工技术,对比模拟钢桁架层、悬索预应力钢结构平台层、屋面穹顶施工工序,比选、优化施工方案,从而确保了最终竣工工期目标的实现。
(二)施工难点
1 本工程E区复杂的建筑造型和钢结构大跨度空间的设计,给穹顶玻璃幕墙的施工带来很大难度。
1.1 屋面穹顶半球体造型,采用平面幕墙玻璃达到曲面圆弧效果,确定空间分格位置、大小难度大。
1.2 玻璃规格形状多样,加工难度大。
穹顶全部为钢结构,弧形钢梁放射性设计致使幕墙玻璃成梯形规格,玻璃尺寸由上至下逐层递变。同时,考虑钢结构施工偏差,幕墙玻璃无法提前批量加工,必须在钢构件焊接完对每个位置的玻璃尺寸现场实量、定位编号,加工周期长。
1.3 幕墙玻璃吊装难度大
本工程穹顶位于建筑物的中心位置,且幕墙玻璃单片面积最大的为5.3m2,施工时既要考虑汽车吊吊臂倾斜角度,又要保证玻璃本身不被损坏。同时,汽车吊无法覆盖的区域还要由人工进行二次倒运。
1.4 穹顶打胶质量要求高
五层屋面花园平台位于穹顶以内,雨水和积雪会完全淋洒在穹顶上,所以玻璃缝隙及遮阳铝板打胶质量要求高,任何一点质量隐患都会造成穹顶漏水。
2 模拟仿真受力计算多。
本工程悬索预应力钢结构造型新颖独特、受力复杂,预应力钢结构从结构的拼装,到预应力张拉完成以及最后支撑架的拆除,其间经历很多受力状态,为了保证工程质量能够符合设计要求,必须进行大量的施工模拟计算。
3 工程量大,工期紧张
3.1 本工程穹顶竖向弧梁为放射形布置,需高空拼装焊接,对接角度、位置确定困难,吊装、定位、焊接完成一榀完整的竖向弧梁需要6个小时,24榀共需15天时间;支撑体系及吊装焊接操作平台构造复杂,搭设困难,搭设架体至少需要15天时间,严重影响施工速度。
3.2 钢桁架层标高为13.05m,共有大小桁架梁112榀,从单榀重量从0.304t至9.691t不等,长度超过10m的钢桁架梁,单段重量最大达到5.017t,需分成两至三段运送至进场。桁架梁采用分段吊装,起吊次数多,严重制约施工速度。
(三)虚拟仿真技术的应用
1 空间张弦结构施工仿真计算
施工过程会使结构经历不同的初始几何态和预应力态,两个状态的分析理论和方法都不同的,加载方式、加载次序及加载量级都对结构受力具有很大影响,因此,施工仿真计算是预应力钢结构施工方案中极其重要的工作。实际施工过程必须和结构设计初衷吻合,施工中必须严格组织施工顺序,确定加载、提升方式,准确实施加载量、提升量等。施工仿真具体项目如下:
(1)验证张拉方案的可行性,确保张拉过程的安全;
(2)给出每张拉步钢索张拉力的大小,为实际张拉时的张拉力值的确定提供理论依据;
(3)给出每张拉步结构的变形及应力分布,为张拉过程中变形及应力监测提供理论依据;
(4)根据计算出来的张拉力的大小,选择合适的张拉机具、设备,并设计合理的张拉工装;
(5)确定合理的张拉顺序,具体张拉步骤如下所示:
第1步:结构全部安装完成后
第2步:第1批拉索张拉到设计初张力的30%
第3步:第2批拉索张拉到设计初张力的30%
第4步:第3批拉索张拉到设计初张力的30%
第5步:第4批拉索张拉到设计初张力的30%
第6步:第4批拉索张拉到设计初张力的70%
第7步:第3批拉索張拉到设计初张力的70%
第8步:第2批拉索张拉到设计初张力的70%
第9步:第1批拉索张拉到设计初张力的70%
第10步:支撑塔架拆除后
第11步:第1批拉索张拉到设计初张力的100%
第12步:第2批拉索张拉到设计初张力的100%
第13步:第3批拉索张拉到设计初张力的100%
第14步:第4批拉索张拉到设计初张力的100%
2 虚拟仿真优化施工工序
方案经优化后,悬索预应力平台层与穹顶钢构两大施工区域间,由原来的顺序施工,改为平行立体穿插施工,大大缩短了E区钢结构施工关键线路的总用时,大大缩短了工期。
我们运用虚拟仿真技术,融合了计算机图形学、多媒体工业建筑技术、网络技术、电子技术等高新技术,对悬索平台层、屋面穹顶施工过程建立仿真模型,虚拟、对比原方案施工过程及优化方案,利用计算机硬件、软件及各种传感器创造出一个四维空间虚拟环境, 使所需解决的问题得到清晰和直观的认识。
(四)实施效益
1全国组织干部学院E区钢平台悬索预应力在实际施工过程中,通过详实的理论计算和周密的施工部署,将困难考虑充分、问题解决在施工之前,最终施工质量和装修效果得到各方一致好评。平台预应力钢索张拉检测全部符合设计要求。
2 作为北京市最大跨度的玻璃幕墙穹顶,经过施工现场精心策划,合理安排各工序穿插,并严格控制玻璃加工尺寸,严把施工过程质量,确保穹顶玻璃一次安装到位。
3 通过虚拟仿真施工过程,优化施工方案,本工程穹顶所有钢构件的安装任务于2011年1月10日全部完成,共压缩工期47天,施工过程中未出现一起质量及安全事故,工期目标圆满实现。
[关键词] 虚拟;仿真;穹顶;悬索预应力;玻璃幕墙
中图分类号:TU74 文献标识码:A 文章编号:
(一)工程概况
全国组织干部学院E区结构设计复杂,采用型钢混凝土框架-剪力墙混合结构、钢桁架结构、预应力悬索钢结构和穹顶钢结构等多种结构形式。
1屋面穹顶钢结构采用全隐框玻璃幕墙,共约3000 m2,幕墙玻璃采用8+1.52PVB+8mm和10+1.52PVB+10mm两种钢化夹胶玻璃,穹顶最顶部水平位置采用10+1.52PVB+10mm玻璃,共计32块;开启扇玻璃共3排,即第8排、第9排和最底部1排,共计144块;其它玻璃共计476块,合计穹顶夹胶玻璃为652块,每块玻璃面积约4.0m2至5.3 m2不等,玻璃自重约250㎏/块。
2 屋面穹顶高42.3m,施工中设计图纸变更,在E区钢桁架层与屋面穹顶之间增加一层悬索预应力钢结构层,即多功能厅(二层)上增加屋面花园平台(五层)。
悬索预应力钢结构平台(图4中红色虚线部分)整体形状为圆环形,由24榀钢桁架以15°角度成放射状均匀布置,圆环直径28.90m,内圆环镂空,直径7.30m,桁架高1.80m,上下弦为焊接H型钢,中间为三根无缝钢管与之焊接相连,每榀重量为6.1t,长10.7m。结构的下层由环向拉索和径向拉索组成,构成稳定的空间结构受力体系。
3、E区屋面造型独特,穹顶钢结构及玻璃幕墙、悬索预应力钢结构层施工复杂,需利用虚拟仿真施工技术,对其施工及各阶段受力情况、安装精度、构件尺寸等进行详细的分析研究,并优化设计、施工方案,以达到最好的工程效果。
3.1 为达到屋面穹顶完美的半球体效果,利用仿真技术,通过建立三维模型,确定玻璃幕墙空间分格尺寸,逐一确定每块玻璃的具体加工、安装尺寸;
3.2 施工前,为确保悬索预应力钢结构质量安全可靠,对空间张弦结构施工进行仿真计算,模拟悬索预应力张拉,确保整个钢平台的施工万无一失;
3.3 为确保原竣工日期的实现,项目部成立QC小组进行现场攻关,利用虚拟仿真施工技术,对比模拟钢桁架层、悬索预应力钢结构平台层、屋面穹顶施工工序,比选、优化施工方案,从而确保了最终竣工工期目标的实现。
(二)施工难点
1 本工程E区复杂的建筑造型和钢结构大跨度空间的设计,给穹顶玻璃幕墙的施工带来很大难度。
1.1 屋面穹顶半球体造型,采用平面幕墙玻璃达到曲面圆弧效果,确定空间分格位置、大小难度大。
1.2 玻璃规格形状多样,加工难度大。
穹顶全部为钢结构,弧形钢梁放射性设计致使幕墙玻璃成梯形规格,玻璃尺寸由上至下逐层递变。同时,考虑钢结构施工偏差,幕墙玻璃无法提前批量加工,必须在钢构件焊接完对每个位置的玻璃尺寸现场实量、定位编号,加工周期长。
1.3 幕墙玻璃吊装难度大
本工程穹顶位于建筑物的中心位置,且幕墙玻璃单片面积最大的为5.3m2,施工时既要考虑汽车吊吊臂倾斜角度,又要保证玻璃本身不被损坏。同时,汽车吊无法覆盖的区域还要由人工进行二次倒运。
1.4 穹顶打胶质量要求高
五层屋面花园平台位于穹顶以内,雨水和积雪会完全淋洒在穹顶上,所以玻璃缝隙及遮阳铝板打胶质量要求高,任何一点质量隐患都会造成穹顶漏水。
2 模拟仿真受力计算多。
本工程悬索预应力钢结构造型新颖独特、受力复杂,预应力钢结构从结构的拼装,到预应力张拉完成以及最后支撑架的拆除,其间经历很多受力状态,为了保证工程质量能够符合设计要求,必须进行大量的施工模拟计算。
3 工程量大,工期紧张
3.1 本工程穹顶竖向弧梁为放射形布置,需高空拼装焊接,对接角度、位置确定困难,吊装、定位、焊接完成一榀完整的竖向弧梁需要6个小时,24榀共需15天时间;支撑体系及吊装焊接操作平台构造复杂,搭设困难,搭设架体至少需要15天时间,严重影响施工速度。
3.2 钢桁架层标高为13.05m,共有大小桁架梁112榀,从单榀重量从0.304t至9.691t不等,长度超过10m的钢桁架梁,单段重量最大达到5.017t,需分成两至三段运送至进场。桁架梁采用分段吊装,起吊次数多,严重制约施工速度。
(三)虚拟仿真技术的应用
1 空间张弦结构施工仿真计算
施工过程会使结构经历不同的初始几何态和预应力态,两个状态的分析理论和方法都不同的,加载方式、加载次序及加载量级都对结构受力具有很大影响,因此,施工仿真计算是预应力钢结构施工方案中极其重要的工作。实际施工过程必须和结构设计初衷吻合,施工中必须严格组织施工顺序,确定加载、提升方式,准确实施加载量、提升量等。施工仿真具体项目如下:
(1)验证张拉方案的可行性,确保张拉过程的安全;
(2)给出每张拉步钢索张拉力的大小,为实际张拉时的张拉力值的确定提供理论依据;
(3)给出每张拉步结构的变形及应力分布,为张拉过程中变形及应力监测提供理论依据;
(4)根据计算出来的张拉力的大小,选择合适的张拉机具、设备,并设计合理的张拉工装;
(5)确定合理的张拉顺序,具体张拉步骤如下所示:
第1步:结构全部安装完成后
第2步:第1批拉索张拉到设计初张力的30%
第3步:第2批拉索张拉到设计初张力的30%
第4步:第3批拉索张拉到设计初张力的30%
第5步:第4批拉索张拉到设计初张力的30%
第6步:第4批拉索张拉到设计初张力的70%
第7步:第3批拉索張拉到设计初张力的70%
第8步:第2批拉索张拉到设计初张力的70%
第9步:第1批拉索张拉到设计初张力的70%
第10步:支撑塔架拆除后
第11步:第1批拉索张拉到设计初张力的100%
第12步:第2批拉索张拉到设计初张力的100%
第13步:第3批拉索张拉到设计初张力的100%
第14步:第4批拉索张拉到设计初张力的100%
2 虚拟仿真优化施工工序
方案经优化后,悬索预应力平台层与穹顶钢构两大施工区域间,由原来的顺序施工,改为平行立体穿插施工,大大缩短了E区钢结构施工关键线路的总用时,大大缩短了工期。
我们运用虚拟仿真技术,融合了计算机图形学、多媒体工业建筑技术、网络技术、电子技术等高新技术,对悬索平台层、屋面穹顶施工过程建立仿真模型,虚拟、对比原方案施工过程及优化方案,利用计算机硬件、软件及各种传感器创造出一个四维空间虚拟环境, 使所需解决的问题得到清晰和直观的认识。
(四)实施效益
1全国组织干部学院E区钢平台悬索预应力在实际施工过程中,通过详实的理论计算和周密的施工部署,将困难考虑充分、问题解决在施工之前,最终施工质量和装修效果得到各方一致好评。平台预应力钢索张拉检测全部符合设计要求。
2 作为北京市最大跨度的玻璃幕墙穹顶,经过施工现场精心策划,合理安排各工序穿插,并严格控制玻璃加工尺寸,严把施工过程质量,确保穹顶玻璃一次安装到位。
3 通过虚拟仿真施工过程,优化施工方案,本工程穹顶所有钢构件的安装任务于2011年1月10日全部完成,共压缩工期47天,施工过程中未出现一起质量及安全事故,工期目标圆满实现。