论文部分内容阅读
针对现有知识图谱补全算法耗时长和准确性差的问题,构建一种基于半边的多层卷积模型。通过引入半边原理,运用实体的描述信息和关系自身的特性,结合两者的语义相似度对关系所连接的头尾实体进行约束,组成半边,在此基础上使用卷积神经网络进行知识图谱补全。该模型将只含有一个实体和关系的不完全RDF三元组以半边的形式保存,便于补全扩充的知识图谱。实验结果表明,与TransE、DKRL等模型相比,该模型具有较优的实体和关系预测性能,同时能有效缩短运行时间。