Legendre级数相关论文
多极边界元法(FM-BEM)是近几年才发展起来的一种能快速计算的数值方法,它融合了多极展开法(FMM)和边界元法(BEM)。这种方法的计算量和存储......
快速多极边界元法(FM-BEM)是快速多极展开法(FMM)与边界元法(BEM)相结合产生的。FMM法是基于球谐函数在空间中的多极展开,并采用递......
学位
本文沿用「1」中的方法及Legendre多项式的性质,证明了一类缺项Legendre级数在其收敛椭圆上任意一段弧的像都是不可求长曲线,从而可知它的收敛椭圆为其......
期刊
对Legendre多项式的多种形式进行总结,以便其应用在不同的领域。对它的解的性质进行分析证明,从而给Leg-endre多项式的运算和插值......
时变动力学问题可归纳为一含时变系数微分方程组。该文用状态空间方程,结合Legendre级数展开及Legendre积分算子矩阵,提出一种分析时变动 系统的方法......
蒙特卡罗方法或离散纵标法模拟多群中子输运方程,散射角分布通常按Legendre级数展开,取L阶截断近似.当L较小时,近似角分布在[-1,1]......
对三维位势及位势梯度Legendre级数基本解进行了研究.利用Legendre函数性质和近远场划分准则,推导出位势及位势梯度基本解的截断误......
论文从飞行器设计中对曲面构造、方程求解以及代理模型等问题的具体需求出发,探讨了相应的(1)函数逼近空间、(2)具体逼近算法、(3)......
将位移的Legendre级数用于求解大系统递阶控制中的线性两点边值问题,从而把求解两点边值问题转化为求解初值问题。文中给出了一种......
时变动力学问题可归纳为一含时变系数微分方程组 .该文用状态空间方程 ,结合Legendre级数展开及Legendre积分算子矩阵 ,提出一种分......