鲁棒学习算法相关论文
讨论标准BP算法的非鲁棒性问题,提出了一种基于鲁棒滤波器的神经网络鲁棒学习算法及其实现过程。......
结合支持向量机和神经网络各自的优点,提出了一种新颖的自适应支持向量回归神经网络(SVR-NN).首先,利用支持向量回归方法确定SVR-N......
为了选择神经网络的最好结构以及增强模型的推广能力,提出一种自适应支持向量回归神经网络(SVR-NN).SVR-NN用支持向量回归(SVR)方......
结合支持向量机和神经网络各自的优点,提出了一种新颖的自适应支持向量回归神经网络(SVR—NN).首先,利用支持向量回归方法确定SVR—NN的......
针对水下机器人神经网络控制系统响应速度慢及对噪声较敏感的问题,依据变结构控制理论,结合误差反向传播学习算法,推导出一种新颖的强......
用定标鲁棒代价函数代替传统的二次型指标,并结合改进的遗传算法,搜索近最优径向基函数神经网络(RBFNN)的结构和参数。实验结果表明该训练方......
通过对常规最小方差型目标函数局限性的分析,根据鲁棒统计学理论和目标函数在参数学习中的导向作用,对目标函数进行修正.在此基础......
在机器学习领域,监督学习算法在理论层面和工程应用中均取得了丰硕的成果,但此类算法的效果严重依赖训练样本的标签质量,在实际问......
鉴于工业过程的时变特性以及现场采集的数据通常具有非线性特性且包含离群点,利用最小二乘支持向量机回归(least squares support ......