论文部分内容阅读
提出了基于学习的多宇宙并行免疫量子进化算法,算法中将种群分成若干个独立的子群体,称为宇宙.并给出了多宇宙的并行拓扑结构,其中各宇宙独立演化,宇宙内采用免疫量子进化算法,宇宙间采用基于学习机制的移民、模拟量子纠缠的种群交叉等信息交互方式,使得进化算法具有更好的种群多样性,更快的收敛速度和全局寻优能力.仿真实验结果表明该算法比串行的免疫量子进化算法运算效率更高.