【摘 要】
:
本文的基本思路是将解决RFID系统的安全问题分别划分到通信层和应用层,在通信层增加适量的认证协议,保证标签的基本信息不被泄露,防止克隆标签,在应用层再根据具体的应用环境设计其他的安全和隐私协议,基于此,本文提出了一种防冲突的RFID群认证协议(Group tags identification and authentication protocol,GIA),该协议从通信层来解决标签识别和安全与隐
【出 处】
:
第八届中国可信计算与信息安全学术会议
论文部分内容阅读
本文的基本思路是将解决RFID系统的安全问题分别划分到通信层和应用层,在通信层增加适量的认证协议,保证标签的基本信息不被泄露,防止克隆标签,在应用层再根据具体的应用环境设计其他的安全和隐私协议,基于此,本文提出了一种防冲突的RFID群认证协议(Group tags identification and authentication protocol,GIA),该协议从通信层来解决标签识别和安全与隐私问题。提出了一种群标签的识别与认证协议GIA.GIA协议在识别过程中采用假名进行防冲突识别,防止标签敏感信息的泄露,在认证过程中只用伪随机数发生器实现了阅读器和标签之间的相互认证,解决了中间人攻击、前向安全、重放攻击和克隆等安全问题,同时也满足了低成本标签的要求.用可证明安全模型证明了GIA满足了安全性目标.与现有的相关研究进行比较,GIA在存储开销、计算代价和通信开销上具有较好的性能.
其他文献
Revealing security vulnerabilities is one of great challenges for the Android ecosvstem Staticanalvsis is the usual approach of the securitv analysis for computer software However.it is undirected and
信任模型是解决开放式网络环境中信任问题的有效方式,信任量化是可信管理中亟待解决的关键问题.针对信任量化中动态适应能力不足,信任的有效聚合不足,激励机制考虑不足等问题,根据信任模型设计原则,本文在推荐信任量化中引入奖惩因子体现推荐实体对访问主体的直接信任的可靠程度,采用推荐实体的评价可信度来决定访问客体是否采纳推荐实体的推荐;综合信任的度量过程中采纳平衡权重因子解决直接信任和推荐信任的权重问题;最后
Trusted Platform Module (TPM) is the "root of trust" of the whole trusted computing platform.It is necessary to analyze the TPM 2.0 specifications to judge whether it has the old vulnerabilities in TP
As Cloud Computing is one of the hot and trending technologies.A large amount of sensitive information is increasingly centralized into the cloud.To preserve the datas privacy,sensitive data has to be
The anomaly detection as a kind of intrusion detection way is good at detecting the unknown attacks or new attacks,and it has attracted much attention during recent years.A new hybrid intrusion detect
Attribute based encryption enables data owners to share their information by specifying access control policies while outsourcing their encrypted data to the cloud.However,there are no efficient searc
为保障云环境中虚拟机应用的安全性与可用性,本文提出一种能够支持多种虚拟化技术的进程非代理监控方法.利用该方法设计一个非代理的进程主动监控框架.本框架将进程监控点设在虚拟机监视器中,而不在其中安装任何代理.该框架可以支持VMware、Xen、KVM三种虚拟化技术,实现了对客户操作系统(Guest OS)的隐藏进程检测和进程负载监控保证虚拟机安全可靠地运行.对于隐藏进程检测,从被监控虚拟机外部获取活动
随着互联网的快速发展,网络舆情分析研究变得越来越重要.其中聚类是网络舆情分析中的一个非常重要的方法.传统的聚类算法都是基于词语来进行聚类,忽略了文本中可能隐含的信息.本文将TF-IDF和LDA主题模型分别计算的文本相似度进行线性结合来计算文本之间的相似度,从而进行更准确的聚类分析.在构建LDA主题模型时,通过Gibbs抽样来进行参数估计,通过贝叶斯统计的标准方法进行最优主题数的确定.在仿真实验中,
随着分布式系统并发性和交互性的不断增加,其可靠性变得难以保证,而对其行为进行建模、分析与检测是解决这一问题的重要手段.本文引入进程代数对分布式系统的行为建模,提出一种行为分析与检测方法.该方法通过分析二进制码获得系统的控制流程图并将其转换为进程表达式;通过消除表达式不确定性、添加并发操作以及约简归并等方式对表达式进行重写;依据并发规则消除进程表达式中的并发算子,建立分布式系统的行为检测模型,并给出
信息时代,公民更多的参与到网络媒体中,产生出大量舆论,部分舆论需要进行检测、监控,以辅助相关部门决策,发扬积极舆论,引导消极舆论.面向网络舆情分析领域的应用,本文研究了系统聚类、String Kernels、K最近邻算法、SVM算法以及主题模型等五种聚类算法,以网络舆情数据为数据对象集,以R语言环境中为实验工具,对五种聚类算法进行了全面的对比研究,同时进行了仿真实验,比较了这五种算法在网络舆情文本