利用光学波段渡越辐射诊断间接驱动过程中的超热电子

来源 :第六届全国高能量密度物理会议 | 被引量 : 0次 | 上传用户:yus520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  在间接驱动激光聚变实验中,受激拉曼散射(SRS)会产生大量的超热电子,从而预热靶丸、破坏靶丸的压缩对称性,甚至导致点火失败.对超热电子的诊断有助于优化点火参数.目前主要的诊断方式是通过多通道X波段滤波荧光(FFLEX)谱仪探测其轫致辐射谱.本文提出一种新的诊断思路,即探测超热电子通过金腔外表面时发生的渡越辐射.计算结果表明,当超热电子能量服从温度为20 keV的麦氏分布且金壁厚8 μm时,在可见光波段,渡越辐射功率比0.1 eV的黑体辐射功率高2到3个量级.因此,利用渡越辐射探测超热电子在激波达到腔靶外界面之前是可行的.此外,光学波段的条纹相机比较容易实现皮秒量级的时间分辨,通过诊断光学波段渡越辐射,可更精确地研究受激拉曼散射过程产生的超热电子的时间演化行为.
其他文献
  磁化套筒惯性聚变(MagLIF)作为一种结合磁约束与惯性约束聚变两者优点的新兴聚变方式,对未来国防与科技发展均具有重要的意义。本在调研跟踪国外磁化套筒惯性聚变研究领
  在惯性约束聚变,特别是混合驱动中,为保证高度压缩靶丸和聚心冲击波形成点火热斑,在激光能量沉积处要求高程度的均匀性.然而激光束数量有限,激光焦斑强度分布不均,这些早期扰
会议
  在由激光驱动的惯性约束靶丸中,壳层材料在热斑中的混合阻碍是聚变成功点火的主要因素,它已成为相关研究的一项紧迫课题。在壳层加速压缩阶段,激光辐照的不均匀引起的扰动以
  双壳层靶主要是针对中心点火方式设计的,外壳层是烧蚀材料,内壳层由高Z材料构成,里面充满高压DT气体。这种靶构型与传统的中心点火靶(冷冻靶)相比,无需复杂的冷冻设施,高Z壳层
  激光加速是最近十几年发展起来的新型加速技术,激光加速离子参数的诊断对发展新技术、认识新物理至关重要.激光加速过程中伴有强电磁场、强伽马信号等,导致诊断环境极其复
  基于现有的太瓦级激光系统,我们提出产生百兆电子伏特的质子和几百兆电子伏特的碳离子的同步加速方案。当一束超短超强激光入射到等离子体微通道时,两串高密度的电子束被拉
  介绍了一种新型的单发次超快激光脉冲波形测量技术.该技术不同于频率分辨光开关法(FROG)和自参考光谱相位相干电场重构法(SPIDER),不是通过测量时间延迟τ和光谱ω为自变
  使用PIC数值模拟研究超快激光与纳米靶相互作用过程中所产生辐射的频谱和空间分布,模拟结果显示激光掠入射靶时能产生斜出射的高次谐波,其光子能量可达数百eV,脉宽为百阿
  超短超强激光与次稠密等离子体相互作用会产生各种非线性现象,比如自聚焦、通道形成、电磁孤立子和磁涡旋等。这些现象产生于激光等离子体相互作用过程中,但是它们的电磁场