基于AAO模板的高离子传导率阴离子交换膜的制备与表征

来源 :第十五届全国氢能会议暨第7届两岸三地氢能研讨会 | 被引量 : 0次 | 上传用户:kamael1234567890
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  一种新型有序纳米线阴离子交换膜由多孔的阳极氧化铝模板(AAO)为支撑材料制备而成.以表面活性剂为处理剂对AAO模板进行处理,提高自制氟化咪唑型阴离子交换膜铸膜液在AAO中的填充率.采用压力注入法将氟化咪唑型阴离子交换膜铸膜液填充到AAO模板中,经过干燥、后处理得到纳米线型阴离子交换膜.通过SEM、XRD等方法对膜的结构进行了表征,研究了不同纳米尺寸阴离子交换膜的离子传导率、机械性能、单电池I-V曲线等性能.研究结果表明,纳米线阴离子交换膜的离子传导率比传统自制膜离子传导率高一个数量级,单电池的输出性能为:开路电压为0.66V,功率密度60mW/cm2.
其他文献
本文重点对通信基站用燃料电池备用电源系统的氢气供应方案进行了分析并对不同方案的系统成本进行了比较。针对高压运输方案还提出了基于遗传算法的运输路径优化方法,以实现降低高压运输方案时的成本。通过对特定区域的供氢方案分析初步得出以下结论:燃料电池备用电源通信基站以高压气态运输方式进行氢气供应的方案其年平均投入成本在现阶段为最低,是目前较为合适的通信基站备用能源解决方案。
催化剂载体是燃料电池的重要组成部分,主要起到固定催化剂和辅助催化剂保持大的活性表面积,更重要的是防止催化剂在反应过程中发生聚合等作用.当前,燃料电池主要使用碳黑作为催化剂载体材料,然而在实际操作中碳黑易被腐蚀或氧化而导致催化剂失效.这是长期以来阻碍燃料电池普遍应用的核心问题之一.过渡金属氮化物(TMN)具有高耐腐蚀性,高导电性.我们的研究发现介孔氮化物材料与一般块体氮化物材料在化学性质上,尤其是作
会议
本文综述了燃料电池自加湿膜电极的制备方法及国内外研究现状;介绍的自加湿膜电极的制备方法分别从气体扩散层的优化;催化层的优化;质子交换膜的优化;电池流场优化分别展开论述;系统的比较分析了自加湿膜电极的国内外研究状况;并对自加湿膜电极研究存在的问题进行了阐述和展望。
Solid oxide fuel cells (SOFCs) are energy conversion devices which directly convert chemical energy in a fuel to electrical power through electrochemical reactions over their electrodes.However,one im
会议
Branched sulfonated polymers exhibit excellent properties as proton exchange membranes (PEMs).However,very few highly branched sulfonated polymers are reported as PEMs.The highly branched polymer,incl
Solid oxide fuel cells are considered to be a promising generation power technologies for future energy.Development has been focused on reducing cost and improving reliability.Planar type anode-suppor
会议
一些基于开环易位聚合的聚降冰片烯类衍生物用于阴离子交换膜表现了较高的离子传导率及低的溶胀率.本文以双三苯基磷二氯化钯(Ⅱ)为催化剂,合成了2-苯基-5-降冰片烯,经过功能化、交联、合成了基于开环易位聚合的聚降冰片烯类质子交换膜.实验结果表明:降冰片烯衍生物的开环易位聚合的质子交换膜具有较高的质子传导率、低的溶胀度以及甲醇渗透率,甲醇燃料电池单电池的输出功率在80℃,达到120mw/cm2.
The type 310S heat resistant alloy is considered as a metallic interconnect material for solid oxide fuel cell.Kinetics of oxidation and the conductive property of oxide scale formed on the surface of
会议
燃料电池全氟磺酸质子交换膜,例如Nafion易受氧自由基轰击导致其化学降解。[1]研究表明,即使Nafion/PTFE复合膜仍无法有效保证Nafion的化学稳定性。且主要膜降解发生区域集中于电池阴极(空气)侧。这种化学降解将导致电池性能衰减,并最终导致膜大面积破损。因此,缓解质子交换膜化学降解已成为燃料电池研究领域的热点。然而对于抗氧化问题,自然界已经提供了解决方案。人体中各种维生素保证了我们不会
Today the world is facing energy crisis,all countries in the world race to find alternative sources of energy,microbial fuel cells have low pollution,low cost,high stability and at the same time deal