Estimating treatment importance in multi-drug-resistant tuberculosis using Targeted Learning:an obse

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:kornnay
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Multi-drug-resistant tuberculosis(MDR-TB)is defined as strains of tuberculosis(TB)that do not respond to at least the two most powerful anti-TB drugs.
其他文献
Logistic or other constraint often preculde the possibility of conducting incident cohort studies.
Heterogeneity is often natural in many contemporary applications in-volving massive data.
会议
The biomedical field has recently focused on developing targeted therapies,designed to be effective in only some subset of the population with a given disease.
Modern high throughput biotechnologies such as microarray and next generation sequencing produce massive amount of information for each sample assayed.
In high-dimensional regression analysis where the number of potential covariates is much larger than the sample size,inference on the support of true coefficients is necessary and crucial.
Excursion probabilities of Gaussian random fields have many applications in statistics(e.g.,scanning statistic and control of false discovery rate(FDR))and in other areas.
Principal component analysis(PCA)is a useful tool to identify important linear combina-tion of correlated variables in multivariate analysis and has been applied to detect association between genetic
We investigate the scenario of selecting variables in both the group level and within-group level simultaneously,in the sense that at most one variable will be selected in each group.
Motivation: In large-scale genetic association studies with tens of hundreds of single nucleotide polymorphisms(SNPs)genotyped,the traditional statistical framework of logistic regression using maximu
With the help of distributed sensing and high-speed wireless communication technologies,real-time data collection in complex systems is becoming more and more common.