Dual function of Cu-incorporated TiO2 coatings on titanium for the application of percutaneous impla

来源 :2015 Shanghai Thin Film Conference(2015上海薄膜国际会议) | 被引量 : 0次 | 上传用户:xrong19730911
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Titanium(Ti)and its alloys have been commonly used to construct percutaneous bone-fixed implants owing to high mechanical strength,corrosion resistance and biocompatibility.To endow a Ti-based implant with enhanced skin integration and antibacterial property,microporous TiO2 coatings doped with different dose of Cu2+ ions were fabricated by micro-arc oxidation(MAO).
其他文献
Integration of Ⅲ-Ⅴ materials on germanium(Ge)substrate,which has been investigated for decades,provides an effective mediation approach for silicon based optoelectronic devices.[1] GaAsBi,as a relativ
In this paper,six percent Nb-doped TiO2(NTO)thin filmns were prepared by High Target Utilisation Sputtering(HITUS)on glass substrates at different oxygen pressures at room temperature.After deposition
One of the key challenges in engineering of orthopedic implants is to "bioactivate" their surface by using different surface techniques and materials.Carbon,especially amorphous(a-C)and diamond-like c
A surface treatment capable of improving the bone cell response to bioinert titanium(Ti)surface in dental implant applications was developed.A natural cross-linker,genipin,was used to immobilize the b
Ti-10Cu sintered alloy has shown strong antibacterial properties against S.aureus and E.coli and good cell biocompatibility in vitro and in vivo,displaying potential application as an implant material
Biofouling and corrosion are the two major persistent problems for artificial marine infrastructures.A variety of strategies in particular surface coating techniques have therefore been developed for
Due to increased awareness and interest in the biomedical implant field as a result of an aging population,research in the field of implantable devices has grown rapidly in the last few decades.Among
Bone ailografi is the most widely accepted approach in treating patients suffering from large segmental bone defect regardless of the advancement of synthetic bone substitutes[l,2].However,the long-te
Surface topography and chemistry have significant influences on the biological performance of biomedical implants [1,2].Chemically,the surface of implant can be modified by incorporating biocompatible
In nasal reconstruction applications,the response of cells to titanium(Ti)implants is largely determined by the surface characteristics of the implant.In our pilot study,we have applied an electrochem