【摘 要】
:
基于Bayesian理论的相关反馈技术是可有效提高图像检索性能的重要手段之一。然而,当前大多数的Bayesian反馈算法普遍受到小样本问题和训练样本不对称问题的制约。本文提出一种新的相关反馈算法,该算法将查询点移动(Query Point Movement,QPM)技术嵌入Bayesian框架中,并采用不对称的学习策略处理正、负反馈信息,故而称之为不对称Bayesian学习(Asymmetry B
【机 构】
:
大连海事大学信息科学技术学院 大连 116026
【出 处】
:
第三届中国数据挖掘学术会议(CCDM2009)
论文部分内容阅读
基于Bayesian理论的相关反馈技术是可有效提高图像检索性能的重要手段之一。然而,当前大多数的Bayesian反馈算法普遍受到小样本问题和训练样本不对称问题的制约。本文提出一种新的相关反馈算法,该算法将查询点移动(Query Point Movement,QPM)技术嵌入Bayesian框架中,并采用不对称的学习策略处理正、负反馈信息,故而称之为不对称Bayesian学习(Asymmetry Bayesian Learning,ABL)。对于正例样本,该算法同时考虑用户提供的正、负反馈信息,并借助QPM技术估计相关语义类图像的概率分布。对于负例样本,我们采用一种半监督学习机制以应对负例样本稀缺问题。首先,通过均匀采样从数据库中选取一组无标记图像,然后,利用QPM技术对其进行数据审计。最后,将审计后的无标记图像作为额外的负例样本,并与用户标记的负反馈信息一起用于估计不相关语义类图像的概率分布。
其他文献
本文提出一种基于全局最优的半监督K-means算法,该算法打破传统方法中采用样本类别作为K值的限定,利用少量标记数据即可指导和规划大量无监督数据。结合数据集自身的分布特点及聚类后各个簇内的监督信息,根据投票方法来指导簇中数据集的类别标记。实验表明,本文所提出的方法可以有效的寻找适合数据集的最佳K值和聚类的中心,提高聚类性能。
主题模型(latent topic model)用于提取隐含在文档集中的主题,其中每个主题是语义相关的一些词的多项式分布。主题模型不但可以发现隐含在文档中的语义信息,而且能够按照主题的规模实现文档的维度约简。本文对主题模型的产生背景、研究现状、研究方法以及存在的问题做了较详细的阐述,在此基础上,提出了一种结合词相似性与CRP(Chinese Restaurant Process)的隐主题模型,该模
针对传统支持向量聚类(Support Vector Clustering.SVC)的高耗费和低性能弊端,提出了简约支持向量聚类算法(Reduced Support Vector Clustering.RSVC).RSVC的核心是简约策略和新的簇划分方法.前者提取对模型生成有重要意义的数据构成简约子集,并在此子集之上完成优化过程.后者根据核函数特征空间的几何性质完成数据类别的指定.相关几何性质也给予
利用基因表达谱建立分类模型,找出决定样本类别的一组特征基因是建立有效分类模型的关键.本文对慢性浅表性胃炎脾虚证与正常人、慢性浅表性胃炎脾虚证与脾胃湿热证两组胃肠粘膜配对样本的基因表达谱进行分析.在特征提取阶段分别利用Wilcoxon符号秩检验、组间和组内平方和比率(BSS/WSS),对两组数据分别进行筛选,据此选出特征基因分别为17个和50个,最后基于相关距离的冗余分析方法过滤冗余基因,分别得到9