论文部分内容阅读
惩罚因子C和核函数参数σ的选择对于支持向量机(SVM)回归模型的拟合和预测精度至关重要。为克服SVM模型易陷入局部最优点的缺陷,提出基于高斯扰动的混合布谷鸟搜索算法(GCs),用于SVM参数的优选,提出GCS-SVM模型用于大坝变形监测非线性预警。通过实例验证分析表明,与SVM模型相比,GCS-SVM模型的预测精度和泛化能力均有一定程度的提高。