纳米硫化铅对酵母菌Saccharomyces cereviase的毒性机理研究:非ROS主导的细胞凋亡及细胞壁壳质素的合成

来源 :第七届全国环境化学学术大会 | 被引量 : 0次 | 上传用户:jx34343
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本研究比较了不同颗粒大小的纳米硫化铅对酵母菌的毒性效应差异,并探讨毒性机理。研究表明,正常情况下由于其刚性的细胞壁,通常认为纳米颗粒是无法进入酵母细胞内的,而溶解的离子和氧化应激引起的细胞壁的损伤会导致纳米颗粒的进入。而线粒体的功能性损伤及细胞壁的物理损伤才是诱导酵母真菌细胞凋亡的主要原因。
其他文献
本研究从湖北省某铜矿开采企业周边村落及农田采集了15个表层土壤样品及周边村落10个居民饮用水样品,经微波消解后,用电感耦合等离子体质谱仪(ICP-MS测定砷、镉、钴、铬、锰、镍、铅、铜、钒、锌、铁和铀元素的含量,并用SPSS进行相关性的分析。结果表明,土壤样品重金属的含量随采样点与开采企业距离的增大而降低。土壤重金属的含量均不同程度的超过其背景值,其中各采样点铅、砷、镉、铜、锌的含量超过背景值22
本研究以斑马鱼为模式生物,对石墨烯和多壁碳纳米管的生物毒性效应和机理进行了比较研究。结果表明,石墨烯的生物毒性较弱,在浓度为50 mg/L才会引起明显的细胞生长抑制和轻微的斑马鱼胚胎孵化延迟效应,但不会导致胚胎内细胞凋亡增加和严重胚胎发育畸形。与之相比,多壁碳纳米管具有较强的生物毒性,在浓度为7.6 mg/L就能明显抑制细胞生长;在浓度为50 mg/L时,多壁碳纳米管会在斑马鱼胚胎卵膜表面大量吸附
本研究以武汉东湖沉积物及上覆水构建模拟体系,在室内研究了纳米银、PVP包裹纳米银(PVP-AgNPs)及AgNO3在其间的迁移转化行为,并采用PCR-DGGE技术探究了沉积物中微生物群落结构的变化。试验表明,AgNPs及PVP-AgNPs在数小时内就沉降到沉积物中,AgNO3则由于形成了氯化银络合物而能稳定分散在上覆水中达数天;沉降到沉积物中的银主要分布在沉积物表层,30d后,仍有90%以上的Ag
在人体内积累的铝能够引起神经系统多种疾病,不同形态的铝化合物具有的生物有效性不同,研究发现纳米铝化合物具有一定的毒副作用,这也使其成为环境和生物化学研究的热点.在环境及生物体系,依赖于NADH 和NADPH的氧化还原酶至少催化六种不同的反应类型.本文采用石墨烯修饰电极研究了不同形态纳米铝化合物Al2O3与AlOOH与乙醇脱氢酶(ADH)和谷胱甘肽还原酶(GR)的相互作用.研究表明,不同形态的铝化合
本研究主要利用两种独立的预处理方法以分离、浓缩污水处理厂进水、机械处理后出水及生物处理后出水中银纳米颗粒,进而测定各水样中银纳米颗粒的实际浓度,最终评价城市污水常规处理工艺对银纳米颗粒的去除效率。研究所需全部水样均采白德国境内9处不同处理规模的城市污水处理厂。本研究结果将有助于银纳米颗粒的生态风险评价,弥补目前在环境水体中银纳米颗粒污染水平上的空白。研究结果显示,城市污水处理厂进水中所含银纳米颗粒
本文选用纳米金、银作为纳米材料,对驯化培养河口湿地表层沉积物所得到的自然环境AOB富集培养物进行纳米材料不同浓度的处理试验,通过测定氨氮、亚硝氮浓度和氨氧化速率的变化特征,利用PCR-DGGE分子指纹图谱技术和qPCR方法分析试验中AOB的多样性与丰度等信息,确定纳米金、银对氨氧化速率、氨氧化细菌多样性与丰度的影响规律,明晰纳米金、银对环境中氨氧化细菌(AOB)的氨氧化作用影响机制,以期为纳米材料
能源和环境问题日益严峻,新型能源的开发和利用逐渐成为当今的时代主题.氢能源具有储量丰富、燃烧值高、清洁无污染和运输方便等特点在新能源开发中脱颖而出.20 世纪,Fujishima等人报道了利用二氧化钛单晶电极光分解水产生氢气,为制氢引入了新方法.通过太阳能光催化分解水产氢是获得氢能最行之有效的方法之一.到目前为止,大多研究和使用的光催化剂主要集中TiO2光催化剂.然而二氧化钛禁带宽度较宽(3.2
故本实验重点研究生物表面活性剂。实验选用胆酸盐和环糊精两种表面活性剂,研究它们对两种微溶性环境内分泌干扰物BPAF与2,4-D的增溶效果,分别从表观溶解度、摩尔增溶比、增溶倍数以及胶束-水分配系数四个角度对增溶能力进行了比较,同时探讨了pH对增溶过程的影响。研究结果表明,生物表面活性剂胆酸钠对BPAF和2,4-D的增溶效果最佳。通过实验条件的改变,提高其增溶效率,从而减少表面活性剂用量,降低污染物
在研究特定水环境条件下的纳米材料环境行为时,识别并阐明何种物理化学作用控制了颗粒-颗粒(团聚)、颗粒-待沉降表面(沉降)间相互作用十分重要。在众多人工纳米材料中,碳-60富勒烯(C60)在生产生活中应用广泛。由于C60本身特殊物化性质,其在水体中的团聚行为受到广泛关注。水体中天然有机质(NOM)主要通过空间位阻作用促进nC60在水体中的分散。但是,水环境中NOM组成复杂,异质性高,因此,与nC60
本实验采用人脐静脉内皮细胞(HUVECs)做为模型,从细胞水平探讨了纳米银的暴露引起HUVECs的损伤与功能紊乱以及其中的分子机理,以此来评价纳米银的早期动脉粥样硬化风险。纳米银能够进入细胞中,引起细胞的氧化应激,损伤线粒体和细胞膜,并且引发细胞凋亡,通过激活经典的NF-κB信号通路,引起血管内皮细胞中与早期动脉粥样硬化相关的一系列基因和蛋白表达的异常,最终引发早期动脉粥样硬化风险。