【摘 要】
:
Lithium-sulfur (Li-S) battery,with a theoretical energy density of 2600 Wh kg-1,is a promising platform for high-energy and cost-effective electrochemical energy storage.However,great challenges such
【机 构】
:
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology,Department of Chemical
论文部分内容阅读
Lithium-sulfur (Li-S) battery,with a theoretical energy density of 2600 Wh kg-1,is a promising platform for high-energy and cost-effective electrochemical energy storage.However,great challenges such as fast capacity degradation and safety concern prevent it from widespread application.With the adoption of Li metal as the anode,dendritic and mossy metal deposited on the negative electrode during repeated cycles leads to serious safety concerns and low Coulombic efficiency.Herein,we reported a distinctive structure of graphene framework coated by in-situ formed solid electrolyte interphase (SEI) with Li deposited in the pores as the anode of Li-S batteries.
其他文献
为了提高Saccharomyces boulardii,增加到达小肠的活细胞数目,我们通过不同材料对S.boulardii进行包埋,以提高酵母细胞胆汁盐溶液中和模拟胃肠道环境条件下的存活率.研究结果表明,在0.3 %胆汁盐处理2h后微胶囊包埋的活菌数则保持在107 CFU/g以上,未包埋的则降至102 CFU/g以下,在人工胃液中处理3 h后,微胶囊化布拉氏酵母活菌数能够保持在108 CFU/g,
离子液体作为一种新型的绿色溶剂,在应用中不可避免会涉及到其储存、运输及操作,钢铁材料作为常用的容器材料,与离子液体接触时可能存在电化学腐蚀问题,因而需要对钢铁在离子液体中的阳极行为进行研究.同时,离子液体用于钢铁材料的电解加工、电化学抛光及钢铁表面电沉积前活化处理时,也都涉及钢铁在离子液体中的阳极行为.本文以典型的AlCl3-EMIC离子液体为对象,通过三电极体系测定了纯Fe在酸性AlCl3-EM
本研究采用两步水热晶化法,以Beta微晶乳液为原料,以聚氧乙烯-聚氧丙烯-聚氧乙烯(P123)为介孔模板剂,通过调变扩孔剂均三甲苯(TMB)与P123的质量比(TMB/P123=0.05、0.1、0.2、0.225、0.25 和0.3)合成出了Beta-SBA-15(BS)系列介微孔复合材料及在质量比(TMB/P123=0.4、0.5、1.0、2.0和3.0)条件下合成了Beta-MCFs(BF)
聚合物单分子胶束仅由一个聚合物分子构成,其结构非常稳定,不易受浓度、温度、pH等影响,同时通过调节其结构,单分子胶束的溶解性、生物相容性、刺激响应性、与基质的相互作用等都可得到改进,甚至赋予壳层导向性、刺激响应性等特性.单分子胶束可以通过拓扑匹配作用、静电作用、氢键作用、范德华力、金属-配体等作用包裹多种客体.聚合物单分子胶束作为纳米反应器、药物储藏库和催化剂载体等,具有广泛的应用前景.目前,有关
随着三次采油技术的应用,每年产生近10亿吨的采油废水需要处理,现有的一般处理工艺已不能满足对水质的要求,提出采用超滤处理聚驱采油废水.超滤膜在处理采油废水时极易受到污染,引起通量衰减、截留性能变差,出水水质恶化,严重时能可引起膜的使用寿命缩短,使设备成本上升,在一定程度上影响超滤技术的推广应用,有关超滤膜污染的防治与清洗方法研究备受重视.
微粒给药系统具有实现靶向给药,改善药物稳定性,提高难溶性药物的溶解度及生物利用度,延缓和控制药物释放等优点而成为国内外一个重要的研究热点,基于微粒的给药途径包括口服、注射、经皮、肺部和鼻腔给药等方式.为了克服传统方法的不足,以超临界流体(SCF)为基础的微粒化技术近年来得到了极大发展.水力空化强化混合超临界辅助雾化技术(SAA-HCM)具有能够处理水体系的优势.论文先以阿莫西林为模型药物,以水为溶
可再生有机胺脱硫技术相比较于传统的石灰石脱硫的最大优势就是可以对烟气中的SO2进行回收利用,成功实现变“废”为“宝”[1,2].在我们前期的研究中[3],发现HPP(1,4-N,N二(2-羟丙基)哌嗪)可以实现高效脱硫,并且在较温和条件下实现解吸再生 [4-6].在HPP生产过程中,通常以甲醇或者乙醇作为溶剂,哌嗪和环氧丙烷反应生成,采用冷却结晶方式从母液中分离得到的HPP含有未反应完全的原料及一
高温气冷核反应堆使用的TRISO(Tristructural-isotropic)型包覆燃料颗粒,其中阻挡核裂变产物最关键的一层为致密SiC包覆层.目前制备SiC包覆层的成熟工艺是采用含卤素前驱体甲基三氯硅烷(methyltrichlorosilane,MTS)在高温下裂解制备而成.MTS裂解会产生氯化氢气体,所以尾气处理具有较高的腐蚀性,导致系统复杂,同时沉积过程中氯元素的残留对核燃料本身也是一
为了有效利用工业系统的余热资源,实施电网电力调峰,重点研究了基于相变储热的余热利用动态热管理方法。针对余热资源的特点,提出了可行有效的相变储热模块设计方案。通过分析储热模块的动态运行特性,建立余热资源和用户负荷的预测模型,提出了动态热管理理念和模型。余热利用系统的能量转换和传递过程通过热管理平台,在空间和时间上得到统一调配和管理,以提高化石能源使用效率,减少环境污染。分析系统状态变量和控制变量的时
锂硫电池具有极高的理论能量密度,有望替代现有锂离子电池,成为下一代的储能技术。然而,锂硫电池的自放电现象降低了电池的贮藏寿命,成为其在投入实际应用时面临的瓶颈问题之一。加深对锂硫电池自放电机理的认识以及寻找抑制自放电的有效方法是锂硫电池研究中的重要问题。