【摘 要】
:
The high-performance MnO2/H-TiO2/carbon-microfiber nanowire composite electrodes were successfully synthesized.Their crystalline properties and electrical conductivity of H-TiO2 nanowires were studied
【机 构】
:
哈尔滨师范大学光电带隙材料教育部重点实验室,黑龙江,哈尔滨,150025
论文部分内容阅读
The high-performance MnO2/H-TiO2/carbon-microfiber nanowire composite electrodes were successfully synthesized.Their crystalline properties and electrical conductivity of H-TiO2 nanowires were studied by X-ray diffraction,Raman scattering and Mott-Schotty theory.
其他文献
近几年来,随着各种可穿戴电子设备不断涌现,如智能手环、智能手表和智能卡等,对相应的可携带储能器件提出了越来越高的要求.为了更好的适应电子器件的可穿戴性,柔性储能器件(柔性电池与超级电容器)受到了研究者的广泛关注.
Graphene,a one-atom-thick two-dimensional(2D) carbon material,has attracted increasing attention in the past several years due to its high surface area,remarkable thermal conductivity,excellent electr
Room-temperature sodium-ion batteries are an appealing alternative for large-scale grid storage applications because of their potentially low cost[1-7].However,there are few appropriate positive elect
环境污染和能源问题已经严重的影响了社会的可持续发展.聚氨酯泡沫作为一种典型的商业化的泡沫材料被广泛的使用,随之而来的废旧聚氨酯回收利用问题也受到人们的越来越多的关注.硫电极材料由于其具有很高的能量密度并且原料价格低廉而被认为是最具潜力的下一代储能材料之一.但该材料本身既不是电子导体也不是离子导体,并且在其充放电过程中,产生的中间产物溶解导致其容量迅速衰竭是制约硫电极材料广泛商业化运用的重要原因.
随着能源及环境问题的日趋突出,电动汽车产业随之发展.然而现有化学电源系统续航能力的不足严重制约着电动汽车的实际应用.有机体系锂空气电池由于超高的理论比能量(11140 Wh/kg) [1],在世界范围内引起广泛的关注.然而,由于氧还原(ORR)及析氧(OER)动力学过程比较缓慢,进而导致了较高的充放电过电位,因此需要高效的催化剂催化电极反应,尤其是OER过程.
For the introductions of fuel cells in wide applications such as residential co-generation systems(EneFarm),fuel cell vehicles(FCV) or power sources for ubiquitous portable devices in 2020th,there sti
围绕电化学界面微结构与宏观相应间的关系,在国内率先开展了化学修饰电极(CMEs)研究。研制新型CMEs 90多种。提出不稳定体系电催化动力学及修饰超微电极的电催化理论和模型。从分子水平设计并拓展在金上,特别是在碳上单层和多层分子及纳米膜的二维、三维有序组装。发现导电聚合物氧化还原过程中伴随离子的掺杂/去掺杂,据此开辟了导电高分子为基的电化学传感器的新方向。发掘石墨烯特性,用制备的石墨烯修饰电极可同
With a rapidly growing demand for portable electronic products(such as folding displays and wearable devices),flexible supercapacitors with free-standing electrodes have drawn great attention owing to
超级电容器是一类具有高功率密度,长使用寿命的电化学储能设备,在未来有广泛应用潜力,例如混合动力车、电子器件、可再生能源和智能电网的功率管理等[1].多孔碳材料是研究超级电容器所应用的最广泛的材料之一.
Supercapacitors have attracted considerable attention because they can provide instantaneously a higher power density than batteries and higher energy density than conventional dielectric capacitors.[