基于SERS检测的蛋白质芯片制备与研究

来源 :第十七届全国分子光谱学学术会议 | 被引量 : 0次 | 上传用户:mrchangmeng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  将表面增强拉曼散射(SERS)光谱应用于蛋白质检测、相关的药物筛选以及免疫反应等生物检测领域,目前已有大量的研究报道[1,2]。其中基于SERS检测的蛋白质芯片的研究,由于其具有可观的应用前景,吸引了研究者的广泛关注。最近我们以一种高度有序的阵列结构为模板,将蛋白质嵌入其中使其形成有序的阵列,成功制备了一种基于SERS检测的蛋白质芯片基底。基于有序的蛋白质分布具有清晰的边界,我们利用微阵列结构的1 nm范围内的SERS电磁场增强特性,在边界区域检测SERS信号,从而实现了蛋白质芯片的高灵敏SERS检测。
其他文献
  提出了红外杂化单光束谱的新概念,研究了杂化谱的性质.与标准光谱相比,杂化谱或多或少存在失真问题.失真程度可以通过选定的实验条件得到很好的控制.在弱信号体系(比如吸光
  建立了一种简单快速的以2,2-联喹啉-4,4-二甲酸二钠(BCA)酸做为共振拉曼和表面增强共振拉曼(SERRS)活性探针检测蛋白质的方法。在这里,蛋白质在碱性的条件下可以将Cu2+还
  采用自组装方法合成TiO2/MBA,TiO2/MBA/Ag(Au)和Ag(Au)/MBA/TiO2等一系列组装体。与TiO2/MBA相比,TiO2/MBA/Ag(Au)和Ag(Au)/MBA/TiO2三明治结构组装体中4-MBA分子的SERS
  采用金属掺杂策略改进和调控半导体TiO2的表面增强拉曼散射(SERS)性能,并且深入理解semiconductor(TiO2)-to-molecule电荷转移机制的贡献/控制因素.研究表明,掺杂金属离
  选用四种激发波长(488,514,633,785nm),探究了有机分子--对巯基苯胺(PATP)在ZnO表面上的拉曼行为。我们发现,分子的拉曼增强散射信号强度及拉曼位移半峰宽等参数呈现明显
  借助量子化学从头算方法,在B3LYP/6-31+G(d)水平下开展气相中天冬氨酸二肽结构特性研究,同时引入对分子结构敏感的振动探针酰胺-Ⅰ带,考察分子处于不同二级结构时的振动光谱
  基于分子间的非共价键作用而形成的超分子体系引起了人们的广泛关注。其中推电子基团和吸电子基团间的超分子作用可使分子内电子云密度发生偏移,进而影响分子的极化率。
  靶标信息的快速获取是精准施药技术的重要环节。大多数靶标探测方法可归类为基于植物形态的空间图像法和基于光反射的光谱方法,这两种方法各有其优缺点,越来越多的研究将图
  利用傅里叶变换红外光谱技术(FTIR)结合化学计量学方法同时快速测定黄酒发酵过程中的重要组分.考察了分析方法、光谱数据预处理、特征波长以及主成分数对模型效果的影响,
  致癌物多环芳烃(polycyclic aromatic hydrocarbons,PAHs)被认为是目前地沟油安全风险中已被证实的最大危害成分,PAHs是一类含有两个或两个以上苯环的芳香化合物,其中每