微型薄膜锂离子电池阴极材料V2O5掺杂Cu研究

来源 :第30届全国化学与物理电源学术年会 | 被引量 : 0次 | 上传用户:xiaojianlan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
采用钒靶磁控溅射制备了用于微型薄膜锂离子电池阴极的V2O5薄膜,并采用掺杂金属的方式改善V2O5的性能,在磁控溅射的过程中掺入不同组分的Cu,通过SEM分析未掺杂的V2O5薄膜呈晶体结构,掺杂Cu使薄膜晶粒更均匀和平滑.循环伏安测试和恒流源充放电测试表明,掺杂Cu的V2O5薄膜比未掺杂的V2O5薄膜表现出更稳定的循环性,更宽的充放电平台以及更高的放电容量.
其他文献
通过水热法和后续液相聚合法制备了Fe3O4/PPY复合物,对此复合物进行高温处理得到了Fe3O4/C材料。利用XRD和TEM表征材料。由此方法制备出了高分散性的Fe3O4均匀分散在碳晶格中的Fe3O4/C复合材料。采用恒流充放电技术、交流阻抗技术和循环伏安法研究了材料的电化学性能。材料在0.1C倍率下循环30次以后库伦效率近100%,其充电比容量维持在671mAh g-1,体现出了很好地电化学稳定
采用相转移法制备了磷酸接枝聚乙烯醇缩丁醛-乙烯醇-乙酸乙烯酯基凝胶聚合物电解质膜,对其进行了机械强度和交流阻抗测试。结果表明,掺杂4%的磷酸使聚合物膜的机械强度从8.1MPa增加到30.2MPa,溶胀电解液后形成了稳定的凝胶聚合物电解质,在室温下离子电导率达到1.37×10-4S/cm.
采用聚丙烯酰胺作为表面活性剂辅助的冷冻干燥法并在500℃下烧结制备出等级等级片状阵列结构的LiV3O8材料.该种材料作为锂离子电池正极材料使用时,在50mAg-1的电流密度下,可在2.0-4.0V的电压窗口中获得255.2mAhg-1的首次放电比容量,当进行60次充放电循环后其容量保持率为88.7%.而且, 在600,1500和3000mAg-1的大电流下,LiV3O8材料循环200次后仍分别可获
通过软化学方法成功的制备了Pd-低缺陷CNT(Pd-LCNT)纳米复合物.该制备过程不需要对CNT进行酸化,同时避免了反应过程中对CNT的还原过程,这些因素使得产物中CNT的结构基本不会被破坏.通过透射电镜可以观察到粒径为3-4nmPd纳米颗粒均匀的分散在CNT表面,并且颗粒的粒径分布较为均匀.而在Pd-酸处理CNT复合物(Pd-ACNT)中,Pd纳米颗粒的粒径分散较广,并且大部分颗粒的粒径大于1
隔膜是全钒液流电池(VFB)的关键材料之一,其物化性能与制备成本直接影响电池系统的性能和成本。目前VFB常用的商品化全氟磺酸离子膜(如杜邦公司Nafion膜)存在钒离子阻隔能力偏低、价格昂贵等问题;传统的非氟离子交换膜存在氧化稳定性较差的问题,极大限制了其在VFB中的大规模商业化应用。为突破该瓶颈,从VFB基本原理出发,首次提出了VFB用多孔离子传导隔膜的研发思路,采用多孔隔膜的孔径筛分效应和电荷
本文利用共沉淀法进行体相掺杂,碳热还原法进行表而碳包覆,旨在同时提高材料的导电性能和振实密度。首先利用共沉淀法,以Fe(N03)3·9H2O为铁源,H3P04为磷源,氨水为沉淀剂,M(N03)2为掺杂剂(M2+=Co2+、Mn2+、Zn2+、Sr2+),制备出了金属离子掺杂的磷酸铁前驱体。再以蔗糖为碳源,以Li2C03为锂源,利用碳热还原法制备出小同金属离子掺杂的碳包覆磷酸铁锂纳米材料。共沉淀法相
为了提高LiFePO4的性能,通过二次固相球磨法制备了Mo掺杂的LiFePO4/C正极材料。使用XRD,FT-SEM,CV和EIS进行了表征。通过XRD分析可知Mo掺杂能够增大在LiFePO4中平行于[010]晶向的晶面面间距,换句话说,Mo掺杂能够增大Li+的扩散通道。电化学测试结果表明LiFe0.99Mo0.01PO4/C在1C倍率下的放电容量为144.8mAhg-1,10C倍率下的放电容量为
本文采用两步法制备三维结构的石墨烯基二氧化锡复合材料(SnO2/GFs):首先,通过原位生长的方法得到二维石墨烯负载二氧化锡纳米片;其次,通过水热的方法实现二维石墨烯负载二氧化锡纳米片的三维组装。该方法得到的SnO2/GFs的材料具有以下特点:3-6μm大孔以及孔壁上有尺寸为3nm左右介孔的三维多级孔结构;大的比表面积(244m2g–1).这些结构不但可以有效的解决充放电过程中SnO2颗粒易于团聚
会议
通过高能球磨固相法制备了高电压尖晶石正极材料LiMn1.5Ni0.5O4,具有优越的电化学性能.XRD谱和SEM分析表明所制备的LiMn1.5Ni0.5O4材料具有良好的尖晶石结构,且比一般高温固相法合成的产物具有更高的结晶度、更规则的形貌.通过二次湿法球磨固相法合成的材料,0.2C倍率下初始放电比容量为134mAh/g,经过100次循环后,比容量保持在123mAh/g以上,所得材料表现出了优良的