论文部分内容阅读
提出了一种基于半监督模糊聚类的异常入侵检测方法,半监督学习算法的训练样本包括已标记数据和未标记数据,在训练系统模型时使用少量已标记样本和大量未标记样本作为种子初始化入侵检测系统的分类器,在少量已标记数据的约束下利用模糊C均值方法生成聚类,无需提供大量标记数据,不易陷入局部最优。实验表明,与FCM 算法相比,具有较高的性能。