噻替哌和替哌水解机理的计算研究

来源 :中国化学会第30届学术年会 | 被引量 : 0次 | 上传用户:daisy8598
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  噻替哌和替哌是临床上广泛使用的广谱抗肿瘤药物[1-2],其分子结构见Fig.1.在CAM-B3LYP/6-311++G(d,p)理论水平上优化了[Thiotepa(Tepa)-nH2O](n=1,4)反应过程中反应物、中间体、过渡态及产物的几何构型,并对各个过渡态和中间体进行了振动分析确认其真实性.同时,结合极化连续介质模型(PCM)研究Thiotepa(Tepa)在水环境中的水解反应过程并与真空环境中的计算结果进行比较.结果表明:两条水解途径和两种水解环境中的作用模式相似,最显著的结构变化发生在与P原子相连的三个氮杂环丙烷上.对于单分子水参与的水解反应,Thiotepa(Tepa)的第二步水解为限速步骤,其能垒分别为54.3和220.9kJ·mol-1,速率常数为1.07×103和1.45×10-27s-1,与文献[3-4]在B3LYP/6-311++G(d,p)水平上计算结果一致.对于四分子水参与的水解反应,噻替哌限速步骤的能垒比单分子水参与的限速能垒高138.4kJ·mol-1,不利于噻替哌水解.但替哌限速步骤的能垒则比单分子水参与的限速步骤能垒低43.7kJ·mol-1,说明四分子水参与反应有利于替哌的水解.
其他文献
  1993年,Natori等人从一种Okinawan海绵中提取出α-半乳糖神经酰胺(α-GalCer,KRN7000),发现其具有抗癌活性。[1,2]研究发现α-GalCer是通过激活NKT等免疫细胞分泌Th1和Th
会议
  一氧化氮(NO)能够调节生物体中多种生理和病理学过程。实时探测生物环境中的NO是极具挑战性的课题,这主要是源于其自由基的本性和快速扩散的特点。近年发展起来的顺磁金
会议
  偶氮苯通过光异构化可以控制多肽的折叠和解折叠过程,并进一步调节多肽的性质以及酶的活性[1-3]。但是,其微观机制目前尚不是非常清楚。我们采用量子力学和分子力学(QM/MM)
会议
  目前,雾霾等污染现象严重影响着人们的生活和工作,为研究其形成机理,对有机气溶胶这一污染物主要构成形式的研究有重要的意义。小分子有机羧酸是二次有机气溶胶的重要组成部
会议
  以H+CH4为代表的X+YCZ3型反应,在燃烧化学、星际化学中有重要意义,近些年来引起人们的广泛关注.X+YCZ3共有12个自由度,为研究该反应,Clary1等人提出了基于C3v对称性的8维
会议
  HPPK是一种重要的激酶和潜在的抗生素靶点,其作用是催化细菌体内重要生命物质叶酸合成的第一步反应。在HPPK的催化过程中,HPPK先结合MgATP,再结合HP,然后催化反应才能发
会议
  通过研究金(I)催化环化吲哚反应[1]的机理,探索配阴离子对质子转移的影响。计算结果表明配阴离子Cl-,OTf-和BF4-作为质子shuttle可以大大降低质子转移过程中的能垒。更为
会议
会议
  在这篇论文中,我们应用从头算电子结构计算和非绝热动力学模拟方法研究了气相反式丙烯醛和2-环戊烯酮的光诱导内转换和系间窜越过程.计算结果表明,从Franck-Condon区到第
会议
  生物钟蛋白CLOCK和BMAL1可以聚合,然后识别并绑定特定的E-box DNA来调节其它生物钟蛋白的转录和翻译过程,因此CLOCK和BMAL1蛋白的聚合以及与DNA的识别在整个昼夜节律调节
会议