玉米芯水解液发酵制丁醇的研究

来源 :2012年全国博士生学术论坛——发酵工程 | 被引量 : 0次 | 上传用户:xiawei0018
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  能源短缺、环境恶化等问题,使得对可再生清洁的生物质能源的研究与开发受到人们的广泛重视。丁醇作为一种新型的生物燃料,性能优于乙醇,可与汽油任意比例混合使用,且不用改造发动机,腐蚀性小,易于运输。玉米芯是来源广泛且廉价的木质纤维可再生原料之一,因此,利用玉米芯水解液发酵制丁醇具有重要意义。
其他文献
促溶离子对反胶束萃取蛋白质收率有着显著影响,本文在利用十六烷基三甲基溴化铵(CTAB)萃取脂肪酶.通过改变促溶离子(尿素和盐酸胍)浓度以调节反胶束萃取脂肪酶的收率,利用动态光散射仪检测有机相中反胶束尺寸的变化,同时使用卡尔-费式水分测定仪测定有机相含水量,探讨促溶离子浓度、反胶束含水量、反胶束尺寸及反胶束萃取收率之间的关系,为揭示微观水平的促溶离子,表面活性剂,水分子,蛋白质分子之间的相互作用机制
By genome data mining, a carbonyl reductase tool-box was designed and developed for chiral alcohol synthesis.Based on systematic comparison of the specific activity and substrate tolerance towards α-c
环氧水解酶(EC 3.3.2.3)能催化水分子立体选择性地加成到环氧底物上,生成相应的邻位二醇.此类水解酶普遍具有较好的位置选择性和对映选择性,因此成为动力学拆分消旋环氧化物制备手性环氧与二醇的理想催化剂.在前期研究中,我们克隆表达了来自Bacillus megaterium的环氧水解酶BmEH(Bacillus megaterium EpoxideHydrolase),对苯基缩水甘油醚(PGE)
光生物反应器是微藻大规模应用的核心装置,其效率的高低及规模的大小已成为制约微藻大规模应用尤其是微藻能源和微藻固碳的瓶颈之一。目前,亟须对原有光生物反应器进行优化,同时需要开发出新型的高效率光生物反应器来实现微藻的应用。
手性羟基酸在化工、制药和农药领域内均有重要应用价值。例如,(R)-邻氯扁桃酸是治疗心血管疾病畅销药物氯吡格雷的主要手性前体;而(R)-2-羟基-4-苯基丁酸是用于合成Lisinopril,Ramipril等多种血管紧张素转化酶(ACE)抑制剂的重要中间体。目前具有工业应用前景的光学纯羟基酸的生产方法有腈水解酶催化的扁桃腈对映选择性水解,酮还原酶催化的酮酸(酯)不对称还原。但是腈水解酶的底物局限于扁
A high-efficiency optically pure L-lactic acid producing strain was engineered from a thermophilic anaerobic bacterium, Thermoanaerobacterium aotearoense SCUT27 isolated by us, which is able to effici
L-苯丙氨酸(L-phenylalanine,L-Phe)是一种重要的必需氨基酸,广泛应用于食品、饲料添加剂以及医药等领域中。微生物发酵法由于具有原料廉价易得、环境污染较小、产物纯度高等优点成为目前国内外工业化生产L-Phe的主要方法。但微生物中L-Phe 的合成途径和调控方式较复杂,L-Phe的合成效率受到限制。棒状杆菌中许多菌株(谷氨酸棒状杆菌(Corynebacterium glutamic
In Escherichia coli K12, succinate was not the dominant fermentation product from xylose.To reduce byproduct formation and increase succinate accumulation, pyruvate formate-lyase and lactate dehydroge
来源于肝素黄杆菌的硫酸软骨素裂解酶AC可以特异性裂解透明质酸、硫酸软骨素、硫酸软骨素A和硫酸软骨素C,而硫酸软骨素裂解酶B可以特异性裂解硫酸皮肤素。因此,硫酸软骨素裂解酶AC和B广泛应用于寡糖结构分析、寡糖图谱、二糖分析、寡糖制备、化学酶法合成。除此之外,硫酸软骨素裂解酶AC和B还具有潜在的临床应用价值,如抗癌作用。硫酸软骨素裂解酶AC和B在肝素黄杆菌中表达需要比较昂贵的硫酸软骨素作为诱导剂,而且
丁醇(C4H10O)为含四个碳原子的饱和一元醇,可通过丙酮丁醇发酵(简称ABE发酵)制得,其不仅为重要的化工原料,亦可作为生物燃料替代日益枯竭的化石燃料。与乙醇相比,丁醇含有更多的热量,并能与汽油以任意比例混溶。此外,丁醇挥发度低,腐蚀性小,作为液体燃料更加容易控制和运输。因此,近年来对生物丁醇的研究受到人们的广泛关注。