【摘 要】
:
Photoelectrochemical (PEC) cells using semiconductor electrodes can efficiently absorb solar energy and perform chemical reactions,which are considered as a very attractive strategy to produce renewab
【机 构】
:
College of Physics and Optoelectronic Engineering, Shenzhen University, China
【出 处】
:
第八届新型太阳能材料科学与技术学术研讨会
论文部分内容阅读
Photoelectrochemical (PEC) cells using semiconductor electrodes can efficiently absorb solar energy and perform chemical reactions,which are considered as a very attractive strategy to produce renewable,sustainable,and clean hydrogen energy.Antimony selenide (Sb2Se3) has been widely investigated for constructing PEC involved photocathodes benefitting of its low cost,low toxicity,suitable band gap,superior optoelectronic properties,and outstanding photo-corrosion stability.Since the first Sb2Se3 photocathode for PEC water splitting reported by Moons group in 2017,extensive research with various architectures and engineering efforts (i.e.,absorber engineering,interfaces engineering,co-catalyst engineering and tandem engineering) has been focused on this interesting scenario.During a very short period,it achieved a rapid development in terms ofphotocurrent from 2 mA cm-2 to 30 mA cm-2,a record Half-cell solar-to-hydrogen conversion efficiency (ηSTH) of 3.8%and a record ηSTH exceeding 10%.It undoubtedly demonstrates that Sb2Se3 and some analogous chalcogenide semiconductors possess great application potential in clean hydrogen production via PEC water splitting.
其他文献
碲化镉和铜铟镓硒薄膜太阳能电池已经实现了大于22%的光电转化效率,但Cd的毒性和In、Ga元素的稀缺性一定程度限制了其广泛应用,需探索新型无毒、高元素丰度的薄膜太阳能电池.锑基硫族化合物薄膜太阳能电池近年来发展迅速,受到广泛的关注.锑硫硒[Sb2(S,Se)3]合金薄膜,因其带隙在1.1 eV到1.7 eV之间连续可调,覆盖了Shockley-Queisser极限效率对应的最佳带隙(1.3 eV)
Cu2ZnSn(S,Se)4(CZTSSe)薄膜太阳能电池由于其良好的光伏性能及无毒丰产的元素组成受到国际上的广泛关注,迄今已达到接近13%的能量转换效率,但是距离理论能量转换效率(33%)仍然相差甚远。对于这种多层结构的薄膜电池器件,除吸收层外,器件上下接触界面(P-N异质结界面、背接触界面)质量是影响器件性能提升的关键因素。针对背接触界面不利的相分解反应、过厚的MoSe2层等关键问题,我们提出
铜锌锡硫硒(CZTSSe)具有组成元素储量丰富、带隙可调、吸光系数高、理论效率高等优点,是薄膜太阳能电池理想的吸光材料.但由于CZTSSe对应的单一相区域十分狭窄,所以制备纯相CZTSSe薄膜非常困难.然而想获得高性能CZTSSe太阳电池,使用单一相CZTSSe作为吸收层是必要的.陈时友等人应用第一性原理计算得出在贫Cu富Zn条件下(即阳离子比例为Cu/(Zn+Sn)≈0.8、Zn/Sn≈ 1.2
铜锌锡硫硒(CZTSSe)薄膜的晶体质量一直是影响其太阳能电池效率的关键因素之一,如何获得高质量的CZTSSe薄膜是研究者们所重点关注的问题.在本论文中,我们采用金属盐-硫脲体系制备CZTS预制薄膜[1],并在不同温度(530℃、540℃、550℃、560℃)下进行硒化热处理,通过对硒化热处理温度的探索,扫描电子显微镜(SEM)结果(图1)显示:当硒化热处理温度为530℃、550℃、560℃时,薄
清洁能源必然是世界能源发展的必然趋势,与其他类型太阳能薄膜电池相比,铜锌硒硫锡薄膜太阳能(CZTSSe)因其潜在效率较高,可控带隙,绿色环保,节约成本等优点,逐渐受到越来越多研究人员的关注。目前对于CZTSSe的研究方向主要集中在下面几个方面:优化药品比例,碱金属掺杂,硫化硒化,过渡层优化,窗口层优化等等方面。本次试验中,我们采用DMF作为前驱体溶剂,通过优化药品中Zn/Sn的比例,提高开路电压,
铜锌锡硫(Cu2ZnSnS4),因其组成元素地壳储备丰富、无毒、环保,并且具有良好的光电特性等优势而备受关注.但多元化合物单一相区域狭窄,Cu2Sn(S,Se)3、Zn(S,Se)、Cu(S,Se)和Sn(S,Se)等二次相都会在偏离化学计量比的条件下形成.因此,对二次相进行表征,寻找减少或消除二次相的有效途径,以及阐明二次相对电池性能影响的物理机制,对于提高CZTSSe太阳电池的光伏性能具有重要
铜铟镓硒(CIGS)及碲化镉(CdTe)高效薄膜太阳能电池目前的光电转换效率都超过了23%,然而铜铟镓硒和碲化镉太阳能电池中组成元素含有稀有贵金属元素铟、镓和带毒性的镉,这限制了它们的进一步发展.Cu2ZnSn(S,Se)4 (CZTS Se)太阳能电池具有组成元素储量丰富、无毒、对光的高吸收系数(104cm-1)、光学带隙可调(1.0~1.5eV)、稳定性高等优点.CZTSSe薄膜太阳电池理论光
溶液法制备高效率的铜锌锡硫硒薄膜太阳能电池一直被业内科研人员所认可.在本论文中,我们采用的是丁酸-正丁胺离子溶液法制备铜锌锡硫硒薄膜太阳能电池.通过调节吸收层薄膜的硒化温度(540℃,550℃,560℃),优化电池的光电转换效率.研究结果发现:随着硒化温度的升高,晶体的结晶性得到改善(如图1),且MoSe2相的峰值有减弱的趋势;同样,相应的电池器件性能也由5.37%提高到8.73%(如图2).进一
锌黄锡矿Cu2ZnSn(S,Se)4 (CZTSSe)太阳能电池是由Cu(In,Ga)Se2 (CIGS)太阳能电池发展而来,因其吸收层薄膜光学带隙可调、吸光系数高(大于104 cm-1)、原料来源丰富等特点,是未来最具发展前景的薄膜太阳能电池之一.但是目前CZTSSe太阳能电池最高效率为12.62%,远低于CIGS太阳能电池的最高效率(23.35%),其主要原因是两者相差较大的开路电压(Voc)
硒化锑(Sb2Se3)凭借原材料储量丰富、绿色低毒、一维结构贡献良性晶界、二元单相组成易于制备、理想带隙匹配高吸光系数、优异的光电性能等优势,在新型高效低成本薄膜太阳能电池研究领域引起广泛关注.Sb2Se3电池效率在短短几年间从低于2%稳步提升至9.2%,但是,与其理论效率(>30%,Shockley-Queisser计算)相比仍存在很大差距.统计分析关键性能参数,电池的短路电流密度(Jsc)和填