基于有源器件的可重构反射阵列天线设计

来源 :贵州大学 | 被引量 : 0次 | 上传用户:www_52810_com
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当下,无线电通信技术蓬勃发展。具有低损耗、低成本、高增益和超带宽性能的天线对于现代通信系统是非常有应用价值。结合抛物面反射天线的高增益和印刷微带天线低制造成本、灵活结构的优点,反射阵列天线得到了广泛的应用,在通信领域中有着举足轻重的地位。然而,它也存在一些局限性,主要是由于微带天线单元的窄带特性以及工作频率变化对空间相位延迟的影响,限制了反射阵列天线的带宽。还有平面微带天线不能进行灵活地波束动态扫描,大大增加了天线的设计量。因此,我们需要一种多功能天线来应对各种各样的应用场景。在此背景下,可重构平面反射阵列天线逐渐进入了人们的视野。本文就可重构反射阵列的波束扫描、带宽、可重构技术等方面进行探索。本论文的创新点在于利用有源器件来实现反射阵列天线的可重构,以单元结构的创新来提升阵列天线的带宽。首先,第一款天线提出了一个全反射、无谐振的反射单元与高度可调的机械可重构技术相结合的设计方案,实现了可重构反射阵列天线的宽带特性。设计、制造和测量了11×11个单元的原型阵列,验证所提出的反射阵列单元的可行性。该反射阵列的增益为17.7d Bi、波束扫描范围为±50°、-3d B带宽为39%。提出的设计可用在无线通信的低成本波束扫描天线之中。接下来,本文设计基于PIN二极管的电子可调反射阵列。设计了一个方形环和开槽方形贴片组成的反射单元。它的中心频率是5.8GHz,在开槽方片上连接PIN二极管来获得180°的相位差。制作了反射阵的实物样品和相位控制板,并在吸波暗室中对其进行了测量,最后对测量结果和全波模拟结果进行了对比。结果显示1-bit可重构反射阵天线可以实现一定范围内的主波束自适应扫描,加工测试结果与实验仿真结果相互吻合。在±45°完成波束偏转扫描。最大增益为18.9d Bi,扫描损失了在2.5d B以内,保证了波束扫描能力良好,最后1-d B带宽为9.9%,3-d B带宽为19.1%。最后设计了相位连续可调的电控可重构阵列天线。利用加载变容二极管的电子可调单元来实现相位连续可调。在单元加载变容二极管,利用反向偏转电压来改变缝隙的结电容,以达到调相的目的。在8.5GHz,实现了305°的相位覆盖,并进行了仿真验证:主波束增益为20.66d Bi,口径效率为35%,可以进行±60°的角度扫描。相比与PIN二极管,基于变容二极管的连续可调可重构反射阵列天线在相位覆盖、增益,口径效率都有一定的提升。该天线可以用于卫星通信系统的地面基站的波束扫描可重构反射阵列天线之中。
其他文献
随着互联网技术的不断发展与广泛应用,工业数据呈现爆炸式增长的趋势。对生产要求有严格把控的企业来说,传统工业生产模式已无法有效处理当前产生的大规模数据。为了解决这个问题,智能制造分析系统应运而生。智能制造分析系统是基于大数据技术而产生的,通过大数据技术结合相关的分析算法对工业数据进行信息发现,能有效优化生产过程、提升生产效率、节省生产成本、提供科学的生产方案。本论文以某工厂铀产品的生产数据为研究对象
学位
报纸
在超超临界循环流化床锅炉(CFBB)燃烧过程中,温度信息不仅可以反映燃烧过程的细节,还可以反映锅炉的运行状态,这对安全、高效的锅炉运行具有重要意义。锅炉实际运行中炉膛温度信息的获取方法众多,如热电偶测量、声学测量、光学测量等,但这些方法都有其局限性。热电偶只能单点测量,由于成本和条件的限制,很难获取炉膛温度场;声学测量和光学测量,可获得炉膛温度场,但存在许多问题,限制了它们的使用,所以利用数值方法
学位
光谱成像技术可以得到物体的二维空间信息和一维光谱信息,空间信息可以确定物体的形状、尺寸等外在特征,光谱信息可分析物体的成分、含量等内在特征,光谱成像技术的图谱特点使其在许多领域均有着广泛的应用。传统的光谱成像多需要扫描方式来得到空间和光谱的三维数据,数据采集时间长,且硬件系统通常有扫描移动部件。作为一种新型的光谱成像实现方式,快照式光谱成像仅通过一次曝光采集一张图片,结合重建算法便可获取物体的二维
学位
易开采、储量大且高挥发分含量的低阶煤是煤气化技术的理想原材料。但是过高的含水量不仅会使低阶煤在气化时生成大量的废水,还会损耗气化设备的使用寿命。因此,低阶煤在气化前都要经过脱水干燥处理。水热脱水技术可在实现较高脱水率的同时,有效抑制低阶煤在干燥后的重吸附现象。然而,目前对水热脱水技术的研究多以宏观实验为主,无法从微观层次解析水热脱水的作用机理等问题。本文首先以某褐煤为研究对象展开水热脱水实验,探究
学位
化石燃料的大量消耗造成了各种各样的环境问题,因此可再生能源和分布式电源发电成为了目前与储能系统齐头并进的重要研究课题。在各种可再生能源中,太阳能因其具有普遍、数量巨大、清洁安全以及利用方便等优点,得到了广泛的应用。光伏发电系统作为将太阳能直接转化为电能的装置,需要对其能量转化效率进一步地提高,因而光伏发电系统的建模以及优化过程显得尤为必要。本文针对光伏系统建模过程中的光伏电池的参数辨识问题以及最大
学位
随着对宇宙观测与探索的深入,人类基于对宇宙的未知开始筹建下一代超级射电望远镜SKA用以解决一个个宏伟的科学目标。目前在建的SKA1-low即将开始巡天并进入第一科学目标——宇宙黎明和再电离探测的研究。但是低频SKA成像时所带来的带宽涂污效应使得再电离时期各观测信号扭曲,致使后续无法完成更加精确的信号分离等工作,而传统天文的宽带干涉仪成像算法面对海量数据又无法完成精准批量的效应矫正。近年来深度学习在
学位
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,情感分析又是自然处理领域的重要分支和关键任务,被广泛应用于社交媒体、问答服务和舆情分析中,它协助人们解决了各种难题,成为了目前研究的热点方向。但是该研究面临着文本内容灵活、表达方式多样和语句歧义等难点,同时传统的情感分析方法需进行词典构建和数据标注,费时费力的同时还极度依赖领域语言知识,大大阻碍了情感分析的进一步发展。预训练语言模型可在极
学位
钠超离子导体(Sodium superionic conductor,NASICON)结构的材料以其具有Na+快速扩散的通道而闻名,NASICON结构的典型材料Na3V2(PO4)3在理论上具有高离子电导率和低电子电导率。Na3V2(PO4)3材料由于其在空气中良好的热稳定、安全性高和成本低廉等特点,让该材料成为固态电解质材料的候选材料之一。良好的固态电解质需要材料有极高的纯度,才能避免由杂质引起
学位
钛及钛合金具有密度低、耐腐蚀以及耐高温等优异性能,被广泛应用于航空、生物、储氢、核工程等重要领域,然而,钛对氢具有较强的亲和力,容易发生氢脆现象。钛中氢的不同存在方式对钛的损伤程度不同,即氢与钛中微观缺陷不同的相互作用对钛的氢损伤行为不同。因此揭示不同氢环境条件下钛中氢的存在形式、氢与缺陷的相互作用机制将为钛合金在含氢特殊环境中的使用服役提供重要的理论依据和基础。本文选用Ti-Mo合金作为主要研究
学位