论文部分内容阅读
理解连续介质的损伤断裂和动力学不稳定是力学和物理领域一个长期的挑战。随着计算机技术的飞速发展,数值模拟在当今的科学研究中起着至关重要的作用。近年来,一种叫做相场(phase field method,PFM)的方法在处理复杂断裂方面显示出了非凡的能力。然而,该方法所需的高时空分辨率使得其数值计算相当苛刻。而且,以往的研究工作主要集中于脆性断裂方面。最近几年,关于大变形下断裂相场模拟的报道逐渐增加,但是也基本仅限于准静态断裂。据我们所知,至少在力学领域,有关相场建模与非线性弹性动力学耦合的研究屈指可数。在此背景下,我的博士工作首先是提出一系列原创的算法和模型以弥补现有算法和理论的不足。在奠定了方法学的基础之后,进一步的研究致力于揭示脆性/软材料中的高速断裂不稳定和极限裂纹速度的起源。在连续介质理论框架下,除了固体断裂之外,该论文的研究也扩展至非牛顿(粘弹性)流体的流体动力学不稳定。该博士论文的主要工作包括以下五个方面:(1)为了降低断裂相场建模昂贵的计算开销,一种新型的混合自适应有限元相场法(ha-PFM)被提出。基于一个新颖的裂纹尖端识别策略,ha-PFM可以动态地跟踪裂纹的传播并对网格进行自适应的细化与粗化。该方案显著降低了计算成本,例如CPU时间和内存占用等。与以往的自适应相场方法(APFM)相比,计算域的离散采用了一种新的多级混合三角形和四边形单元策略,从而消除了悬挂节点并确保了裂纹尖端附近的网格是高度各向同性的。利用ha-PFM对几种包含准静态和动态断裂的基准算例进行了重新研究并且与采用均匀网格离散的相场模拟进行比较后,我们发现,ha-PFM可以提速约15~30倍。(2)基于已开发的ha-PFM,我们通过计算机模拟研究了聚甲基丙烯酸甲酯(PMMA)的动态脆性断裂。在没有任何先验假设以及附加断裂准则的情况下,数值模拟不仅成功地再现了实验中关键的裂纹特征,例如裂纹模式,速度演化以及极限裂纹速度,而且还发现了实验研究中尚未报道的断裂速度过冲等一些新特征。通过量化进入裂纹尖端的能量通量,我们提出了裂纹分叉遵循一个能量准则。基于这一准则,连续介质理论成功地预测了实验中捕捉到的裂纹的极限传播速度,揭示了裂纹分叉为裂纹传播速度设定了上限。结合裂纹分岔准则和连续介质理论,该研究为裂纹的复杂路径选择提供了合理的解释。(3)在脆性断裂基础上,我们首次提出了自适应边缘基平滑有限元(ES-FEM)框架下的大变形断裂的Griffith型相场格式。其中,ES-FEM是S-FEM算法“家族”的优秀成员,其引入了无网格思想,相比FEM,ES-FEM具有较高的准确性,“较软的”刚度,并且对网格变形不敏感。鉴于此,该研究工作的亮点是将PFM和ES-FEM相结合,从而最大程度的释放两种方法的优势。考虑到PFM和ES-FEM的昂贵的计算开销,我们开发了一种设计良好的多级自适应网格策略,从而大大提高了计算效率(约20倍)。此外,我们详细阐述了 PFM和ES-FEM耦合的数值实施。在此基础上,该工作重新计算了几个有代表性的数值算例,并与实验和文献结果进行了比较,验证了其有效性。需要特别指出的是,本研究首次再现了在橡胶断裂实验中的弱界面导致裂纹偏转。(4)对预应变超弹性材料断裂的数值实验表明,力学基的经典动态相场模型在非线性变形的框架内是不适用的。为了深入理解快速断裂的失稳,我们开发了一种以波速不变为特征的新型动态相场模型,从而使裂纹能够以接近渐近极限的速度传播。鉴于高速断裂的数值处理涉及极高的时空分辨率,因此,本研究采用稳健的显式动力学方法和高效的ha-PFM,并提出了一种新颖的自适应畸变网格去除方案(ADMR),以解决大变形断裂中难以处理的有限元网格畸变问题。本研究给出了整个求解流程的详细数值实施,并通过两个准静态断裂基准验证了程序与算法的可靠性。利用所提出的新颖的模型和算法,成功地再现了超弹性凝胶断裂实验中捕获的超高速裂纹振荡和尖端劈裂失稳。(5)该工作采用著名的Phan-Thien-Tanner(PTT)微分粘弹性本构模型分析非等温薄膜流延的非线性稳定性和动力学。为了进行瞬态薄膜流延的数值计算,该工作首次在膜模型的控制方程中引入了粘弹性应力分裂(DEVSS)和Streamline Upwind-Petrov Galerkin(SUPG)算法。从而,可以在更大的聚合物熔体的加工和流变参数空间进行薄膜流延的稳定性分析。与upper convected Maxwell(UCM)模型所预测的结果不同,我们发现在临界拉伸比(Drc)以上并不存在稳定区域。而在纵横比不同的情况下,我们在模拟中观察到多个Drc峰值,该峰主要受两种变形类型的影响:平面变形和过渡变形。我们的仿真结果表明,拉伸流变行为对拉伸增稠和拉伸稀化流体的流动稳定性起着主导作用,而诸如挤出速率和冷却等加工参数以及松弛时间等流变参数对Drc的影响都可以归因于拉伸粘度。