基于机器学习的软组织厚度预测以及颅面复原技术研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:gmailzyn
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
颅骨面貌复原领域中,面部特征点软组织厚度的获取是一个十分重要的步骤。目前颅骨面部特征点处的软组织厚度的获取主要是通过先进的医疗设备和专业的医护人员进行相应的配合得以实现,但是这种方法存在一个很大的缺陷即对于骸骨则无法进行面部厚度测量。近年来广泛的做法是采用平均值法,但由于未考虑骸骨之间的差异性,使得复原的面貌具有相似性。本论文采用深度学习方法,通过网络中隐含层构成的非线性映射,学习头骨和面貌之间的相互关系及特征,从而实现根据遗骸本身特性预测出一名未知身份的人的面部软组织处的厚度,继而解决了根据颅骨直接预测面型这一难题。本论文主要分为以下两个部分:1、提出了基于反馈神经网络的面部软组织厚度预测。在给出面部特征点处的软组织厚度均值这一先验项的情况下,通过学习成年人的颅骨表面特征点和相应的颅骨面部特征点的三维空间坐标[27]的映射关系,从而较好的解决预测骸骨面部特征点处的软组织厚度这一难题。该模型以颅骨和面部表面特征点处的三维空间坐标作为模型的输入输出。实验结果表明,本文提出的方法所预测的误差均值有38个面部特征点处的软组织厚度都小于1mm,满足临床需求。此外,将本文提出的方法和Dinh等人提出的方法进行对比分析,结果表明,本文提出的方法在面部特征点处的软组织厚度预测方面更精准。2、提出了基于跳层连接的深度卷积编解码器端到端面部软组织厚度预测。实验过程中,根据本论文提出基于先验值和UM的自适应局部阈值分割,对1447位实验者的颅骨CT扫描数据进行颅骨和面部的自适应局部阈值分割得到相应的三维图,然后根据柱面投影原理将三维体数据映射为二维高程图数据,将生成的二维颅骨和面部高程图作为网络的输入输出,接着将预测的面部高程图通过反投影可视化的方法以及二维、三维热图方法进行误差对比分析,同时将该方法预测出的特征点处的软组织厚度同BP反馈神经网络的预测结果和目前最新预测结果数据进行对比分析,验证了采用深度卷积编解码器进行软组织厚度预测充分考虑了面部点的空间特性,弥补了稀疏特征点带来的误差,使得预测结果更加精准。另外,又通过峰值信噪比(PSNR)和结构相似性(SSIM)两项评价指标对不同网络之间和不同的预测尺寸之间进行比较分析,选取了最优的训练模型。
其他文献
医学图像配准是医学图像处理研究领域的一个重要任务和技术难点,对于图像融合、检测肿瘤生长等临床工作有重要意义。图像配准旨在寻找将一幅图像映射到另一幅图像的空间变换。传统的配准方法迭代优化每一对图像的目标函数求解空间变换,存在配准时间长、计算量大的问题。近年来,随着深度学习在医学图像研究领域的广泛应用,基于深度学习的图像配准成为极具前景的研究方向。基于深度学习的有监督配准方法虽然在配准速度与精度方面都
随着网络中数据信息的快速增长,知识库的规模也与日俱增。由于知识库中数据量的庞大规模以及复杂结构的限制,普通用户很难快速有效地获取需要的信息。因此,基于知识库的问答,运用自然语言处理技术,对于用户提出的自然语言问题,自动利用知识库存储的三元组信息(即知识)进行解答,显得尤为迫切和重要。目前,基于知识库的问答研究引起了国内外学者的广泛关注。根据回答问题所需要的三元组的数量可以将知识库问答分为两类:单关
多模态知识表示学习旨在从多模态数据中学习到关于其中数据、信息或知识的低维稠密向量形式的特征表示,作为近年来人工智能研究的热点问题之一,在多模态语义检索、视觉问答(VQA)、多模态情感分析等智能场景中具有重要应用价值。虽然多模态数据能为许多任务提供比单模态数据更多和更有用的特征信息,但如何从多模态数据获得有效的表示学习结果一直是多模态知识表示学习研究的核心问题。本文首先提出了一种基于门控层级融合的多
知识图谱是人类知识的一种显式表示方式,作为近年来人工智能研究的热点领域之一,已被广泛应用于语义搜索、人机互动、辅助决策等智能应用场景。然而,在各种知识图谱驱动的应用中,往往需要借助知识图谱嵌入技术将知识图谱中的元素表示为低维稠密的向量形式,弥补显示知识表示的不足,以满足大量推理、分析和预测的需要。虽然知识图谱嵌入已有很多研究工作,但仍存在知识表示不准确和语义不够丰富的明显不足:(1)基于翻译思想或
图像描述顾名思义,即给定一张图片,算法自动生成一段描述图像内容的文本。该任务对人来说很容易,但对于机器却非常有挑战性。这需要同时用到计算机视觉技术和自然语言处理技术,来实现从图像内容理解到文本生成的转化过程。图像描述应用潜力巨大、在很多方面都很有应用价值,适用于人机交互、图片索引、智能监控、视频标注、视觉辅助等领域。近年来,Encoder-Decoder框架在基于神经网络的图像描述任务中吸引了越来
单目深度预测是计算机视觉中备受关注的研究课题,在自动驾驶、VR游戏制作、影视制作等领域具有广泛的应用价值。然而,目前该领域仍然存在较多为解决的问题,例如使用雷达激光采集深度数据的过程耗费巨大且受天气、光照等客观因素影响大;基于稀疏深度图恢复的深度信息的方法存在边缘深度不连续的问题。本文利用立体图像对进行训练,旨在提高场景深度预测网络的预测能力,对深度网络结构、双目立体匹配、视差图优化等方法进行了研
继美国、欧盟、日本之后,中国于2016年提出中国脑计划,神经性疾病的早期诊断是中国脑计划的一个重要研究方向。癫痫是由脑神经的异常放电引起的神经性疾病,其发作频率高且严重影响患者生活质量与生命安全。癫痫患者中有30%为耐药性癫痫,其治愈手段是采用外科手术来切除癫痫病灶,决定手术成功与否的关键是如何在术前评估阶段有效地识别癫痫病灶与正常功能区。在众多术前评估手段中,颅内脑电图(i EEG,intrac
可定制交互式视频是指在视频编辑和制作的过程中,可以根据不同的受众定制不同内容的交互式视频。目前,可定制交互式视频凭借其可交互、信息量大等优点拥有很大的市场需求(商品导购等)。然而,在可定制交互式视频的制作过程中,当前还面临两个主要问题:第一,对于视频目标检测,视频中经常出现如目标运动模糊、视频散焦、目标姿态奇异以及遮挡等帧图像恶化现象,传统视频目标检测算法难以在此类视频目标检测任务中达到较高的检测
基因作为遗传的基本单位,控制着生物的基本性状,对于个体识别和血缘鉴定都具有决定性的作用。通过基因预测人体的面部形态在刑侦以及法医领域一直是研究的热点,目前比较流行的DNA分子画像技术主要通过全基因组关联分析(Genome-wide Association Study,GWAS)结合单变量差异分析技术或者基于三维稠密数据点研究基因与面部形态之间的关联性,然后通过机器学习算法建立对应的预测模型,这些方
随着信息技术的发展,数字图像深入到我们生活中的方方面面。深度学习是近年来在人工智能领域引起关注的研究主题。作为深度学习的经典模型,卷积神经网络(CNN)在图像分类,对象检测和自然语言处理方面取得了一系列重要的突破。卷积神经网络模型具有计算复杂度高和参数量大的特点,正是这种复杂的多层网络结构为模型提供了强大的特征表示能力。智能设备的普及增加了将卷积神经网络移植到嵌入式设备的需求,但是其巨大的参数冗余