城市地下燃气管道抗震分析及地震灾害情景构建

来源 :中国地震局地球物理研究所 | 被引量 : 0次 | 上传用户:haohaodezuzut
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
地震灾害情景构建是通过建立地震灾害场景,构建地震灾害应对任务模型,依据应对模型计算应急需求并对灾害预防、应急准备不断优化的防灾减灾手段,是一种情景式的应急准备模式,为相关决策部门所采用。本文围绕城市地下燃气管道抗震分析及地震灾害情景构建的研究目标,完成埋地燃气管道抗震的理论分析、经验分析和动力有限元分析,燃气管道功能失效研究等内容,在建立河北地区随机地震动预测模型作为示范区地震动场输入基础上,实现研究区城市地下燃气管道地震灾害情景构建。主要研究内容和研究成果如下:1、系统地研究了地下管道在地震动作用下变形反应的理论法和经验法。考虑面波的影响,推导了瑞利波作用下地下管道地震反应的计算公式;统计分析了基于PGV的埋地管道震害率经验公式;综合考虑影响管道地震破坏的各种因素,引入突变级数法,提出了埋地燃气管道地震破坏等级综合评价分析方法。结果表明:(1)在沉积平原或盆地等面波发育地区,面波对管道所产生的轴向应变要高于剪切波,面波破坏作用建议给予重视;(2)突变级数法可减少埋地燃气管道地震破坏等级计算中的不确定性,具有一定的理论和实用价值。2、开展地震动作用下埋地连续管道和分段管道的动力有限元分析。采用接触单元模拟管土相互作用,建立埋地管道动力有限元分析模型,在有限元模型中采用了粘弹性人工边界,以消除从无限场地土中切取有限尺寸场地进行分析引起的人为误差。同时建立了埋地分段管道动力有限元模型,研究了地震动输入方向、管土相互作用、管材类型、接口结构对埋地管道地震反应的影响规律。结果表明:(1)地震动作用下埋地管道的地震反应受到周围土体应变的传导和约束,管道的应变要小于场地土,且埋地管道的地震反应和土体应变受到地震动输入方向的影响;(2)管土摩擦系数越大、管材越柔,地震动作用下管体反应越大;(3)承插式接口结构会造成应力、应变在接口两侧分布的不连续变化,从而形成应力、应变的间断面,接口强度越弱,不连续现象越明显。论文同时开展了近断层地震动输入下埋地管道地震反应分析。选取具有向前方向性效应速度脉冲、滑冲效应速度脉冲、近断层无脉冲地震动、近断层区外速度脉冲和远场面波的10条地震动记录,开展地震反应数值计算,分析不同类型地震动对埋地管道地震反应的影响,并重点讨论不同类型地震动对埋地管道地震反应影响的差异。结果表明:(1)速度脉冲型地震动因具有较大的速度和位移峰值,会增大埋地管道反应;(2)速度脉冲会使埋地管道地震反应较大,与PGA相关性比较,管道的变形反应与地震动的PGV、PGD相关性更强;(3)在集集地震中,滑冲效应的速度和位移峰值比向前方向性效应的速度和位移峰值大,造成埋地管道的反应变形也更大;(4)发育在沉积平原或盆地地区的大振幅、长周期面波会增大埋地管道的地震反应。3、基于动力学拐角频率的随机有限断层法,开展了适合河北地区地震地质区域特点的地震动场模拟研究,为示范区提供比地震烈度输入更精细的地震动场输入,并以张家口市为例,进一步开展了城市地下燃气管道地震灾害情景构建。基于32个场地钻孔数据,建立河北地区II类和III类场地的土层场地模型,并计算得到平均场地放大系数;分区计算河北地区的场地κ0高频衰减模型,并探讨κ0的分布规律;确定了近年来河北地区中小地震拐角频率和应力降;在震源滑动分布方面,采用凹凸体滑动分布模型的建立方法。基于本文建立的河北地区地震动预测模型参数,分别以邢台平原地区和张家口山区为例,完成考虑震源凹凸体分布和随机分布对比分析的邢台地震近场强地面运动模拟;选用不同的局部场地放大系数和高频衰减κ0模型组成的联合效应,完成张家口山区近场地震动的对比分析。结果表明:(1)局部场地放大系数具有很强的区域特点;(2)场地κ0高频衰减模型受到高程、场地条件、地形起伏等因素的影响,一般而言,场地越硬、高程越高、地形起伏越剧烈,κ0越小;平原地区使用本文κ0模型计算结果与真实记录具有很好一致性;(3)与震源随机滑动分布比较,使用本文方法建立的震源凹凸体分布能有效改善近断层区的地震动强度分布;(4)场地效应为局部场地放大和地震动高频衰减的联合效应,其中高频衰减模型κ0控制着场地反应的峰值和拐点;随机有限断层法在山地地区使用中,应考虑山地地区场地放大系数模型和κ0模型受地形起伏影响的特殊性。本节建立的地震动预测模型可适用于河北地区的相关地震灾害情景构建,符合河北地区地震地质环境的区域特点。基于河北地区随机有限断层法地震动场预测模型,结合研究区本地地震地质特征,计算近断层地震动场,为网格化的示范区地下燃气管网地震反应分析提供加速度、速度等地震动输入,对埋地管道地震作用分析的经验法、突变级数法做比较;对于燃气管道功能失效分析,采用两态破坏准则,提出基于结构破坏的燃气管道功能失效分析方法,并完成示范区燃气管道功能失效分析。结果表明:(1)与以往基于地震烈度所给出的埋地燃气管道震害结果相比,采用本文提出的基于峰值加速度、峰值速度的经验法和突变级数法给出的结果更加细化;(2)环状管道拓扑结构设计、两条以上输气干线设置等措施,能有效提升管道供气功能可靠度,可以为城市燃气管道规划设计和抗震优化改造提供参考。
其他文献
五大连池火山是中国东北地区比较典型的新生代板内火山之一,其西侧是大兴安岭构造带,北侧是小兴安岭隆起区,南侧是松辽盆地,火山区主要由北东向断裂控制,沿着这些断裂分布有14座火山锥:南格拉球山、北格拉球山、卧虎山、药泉山、笔架山、老黑山、火烧山、尾山、东焦得布山、西焦得布山、东龙门山、西龙门山、小孤山、莫拉布山。据史料记载,老黑山和火烧山火山在1719年-1721年有过喷发活动。然而,大地电磁结果显示
下午课前在班上发现窗帘被学生弄坏了,于是就展开调查,产生了询问、处理"窗帘"事件以及学生家长来学校维修"窗帘"等一系列事件。
近日,为贯彻落实《国务院办公厅关于以新业态新模式引领新型消费加快发展的意见》(国办发[2020]32号)部署要求,国家发展改革委等28个部门和单位联合印发了《加快培育新型消费实施方案》(以下简称《实施方案》)。为便于各方面准确理解政策内容,扎实推动政策措施落地见效,国家发展改革委、工业和信息化部、商务部、文化和旅游部、国家卫生健康委、市场监管总局等部门有关负责同志回答了记者提问。
期刊
基于性能的方法确定重大工程的设计地震动参数已经逐渐成为一种主流方向,而面向一般建筑的基于(倒塌)风险的地震动参数区划也将是未来地震区划的必然发展趋势。通过基于性能或基于风险的方法确定设计地震动参数,可以有效的保证所设计的建筑结构在未来一定年限内具备预期的风险或性能。然而,目前关于基于风险或性能的地震动参数确定方法在我国的研究与应用却十分匮乏。本文针对这一问题,从以下几个方面开展了相关研究。首先,当
青藏高原周缘被坚硬的克拉通所包围,其北部为塔里木盆地和阿拉善块体,东部为四川盆地和鄂尔多斯块体,在边界处形成了复杂的接触构造关系,构造活动强烈。四川盆地西侧分布着一系列大型活动断裂,例如龙门山断裂及鲜水河断裂等,历史上发生过一系列中强地震,造成了重大经济损失及人员伤亡。鄂尔多斯块体内部长期以来地震活动性微弱,其周缘地震活动性强烈。因此这些地区一直受到了我国地球物理学领域的重点关注。四川盆地和鄂尔多
本文主要基于弹性均匀介质、弹性成层介质和粘弹性成层介质,通过计算三种不同位错模型(正断型、逆冲型和走滑型)产生的水平面和剖面上的位移场、主应力、面应力和库伦应力变化,分析和讨论上述地壳精细结构对同震及震后静态应力场的影响。研究内容主要包含以下几个方面:1.基于弹性均匀介质,通过模拟计算三种位错模型在水平面和剖面上产生的位移场、主应力、面应力和库伦应力变化,分析弹性均匀介质下位移场、主应力、面应力和
山西裂谷带位于鄂尔多斯与华北地块交汇处,在印度洋板块的挤压和太平洋板块西向俯冲的共同作用下形成。山西裂谷带内发育一系列断裂,导致该裂谷带结构复杂,是我国华北地区西部强震活动带。川西地区位于青藏高原的东缘,由于印度板块与欧亚板块两大板块的强烈碰撞,使川滇地区的地壳产生了强烈变形,地震活动频繁,成为我国最显著的强震活动区域。两个区域均为强震发生区,但是又有其各自的特点。因此开展高精度深部构造环境研究,
场地土层对地震动的放大效应研究是地震工程学中一个重点的研究课题。土层的剪切波速是表征不同场地土层对地震动放大效应的最常用参数。国际上,常用土层近地表30m深度范围内的时间平均剪切波速作为描述土层性质的主要参数(VS30)。在实际的工程应用中,尤其是地震区划、地震保险等大尺度的应用中,逐点测量场地土层的VS30是不现实的;在衰减关系拟合等应用中,很多地震台站也因种种原因缺失了台址的VS30数据。这时
流体注入引发的地震活动是当今地学领域的一个研究热点。位于四川盆地西南缘的长宁地区近年来地震活动频繁,2018年底以来相继发生了多次5级以上地震活动。该地区地震活动与盐矿、页岩气开采注水之间的联系引起了广泛的关注。确定长宁地区地震活动的成因和机理对于分析地震危险性、减轻地震灾害、保障资源开采等具有重要意义。本文使用2015年至2019年长宁及周围地区86个地震台站记录的数据资料,从震源区的三维速度结
华北克拉通岩浆活动、火山活动频繁,形成了各种断层、褶皱。关于华北克拉通的壳幔结构有很多相互矛盾的地方,导致华北克拉通的研究仍存在诸多争议和疑问。岩石圈地壳破坏的机制是什么?华北地区发生的地震多在中、上地壳,那么中、上地壳速度结构有什么特征?这些问题有待于进一步的研究。兴蒙造山带构造演化经历了多期次古亚洲洋俯冲闭合、地壳增生、陆陆碰撞、后造山垮塌拉张等阶段,之后又叠加了蒙古-鄂霍茨克构造域和古太平洋