论文部分内容阅读
纳米金刚石由于其具有一系列特殊的结构和功能,倍受人们关注。然而其制备过程产量较低、不易实现连续化生产。1991年,日本学者Hirai等在研究金刚石的形成机理时发现了一种新的碳同素异构体——新金刚石。由于许多实验所获得的新金刚石样品量都比较少,且新金刚石的颗粒尺寸都很小(小于100nm),对新金刚石结构的研究只能采用电子衍射的办法,从而制约了对新金刚石晶体结构及其物性的研究。在理论研究方面,纳米碳颗粒之间的相对稳定性问题是理解碳纳米材料形成机理的关键,但由于以前计算条件的限制,对该问题的研究仍然有许多的不足。 本文针对新金刚石产量低、纳米金刚石粉生产困难及理论研究方面的现状,提出了具有自主知识产权的催化法(炭黑催化法和催化碳纳米管法)制备纳米金刚石和新金刚石的构想。并在催化法大量制备纳米金刚石和新金刚石的基础上,对其合成机理、新金刚石的晶体结构、纳米金刚石的尺寸和形状对其稳定性、电子结构和声子振动的影响进行了系统的研究,同时,对炭黑催化产物在吸波材料方面的应用做了系统的研究。 以纳米铁为催化剂,炭黑为碳源,在常压和1100℃下保温成功地制备出了纳米金刚石和新金刚石,并用X射线衍射(XRD)、透射电镜(TEM)和拉曼光谱(Raman)对制备的样品粉末进行表征。结果表明,样品粉末是由纳米金刚石粉和石墨包覆新金刚石纳米颗粒组成,纳米金刚石粉的大小为20nm,石墨包覆新金刚石的大小为100nm。 在常压和100℃下,通过水热处理新金刚石和纳米金刚石的混合粉末,制备出了透明的碳薄片。利用扫描电镜(SEM)、TEM、电子探针(EPMA)和傅立叶变换红外吸收光谱(FTIR)对该薄片的相结构和形貌进行表征。结果表明,该碳薄片是具有sp3电子杂化类型的无定型碳,且其并不是纳米金刚石粉末的简单聚集体,而是一种新的水热处理产物。 依据不同温度下的炭黑催化法实验和催化碳纳米管实验结果,提出了催化法制备纳米金刚石和新金刚石的唯像机理。随着温度的增加和碳在铁中的扩散,催化剂Fe在反应过程中经历的相变化顺序是:Fe(OH)3→Fe2O3→Fe3O4→α-Fe→γ-Fe→Fe-Calloy(liquid)→γ-Fe→α-Fe,碳通过在铁液中的扩散和溶解并以石墨和纳米金刚石的形式析出,并在铁处于γ-Fe阶段时,碳以新金刚石的形式析出,最后碳以石墨、纳米金刚石和新金刚石的形式保留了下来。 新金刚石的热稳定性实验结果表明,当其加热到150℃时开始相转变,并在400℃转变结束,而且该相转变反应为放热反应。通过XRD对不同时间时效处理新金刚石样