论文部分内容阅读
预测是根据历史及现在的信息,利用科学方法及手段,对未来发展做出判断。预测作为决策科学化表现的前提,长期以来受到学界的广泛关注,在经济管理、信息技术及能源环境等领域具有重要的理论意义和实践价值。预测建模的本质很大程度上可以归结为函数逼近和曲线拟合问题。尽管传统的逼近方法如多项式、样条等在预测模型中已取得丰硕的成果,但仍需要不断开发新的预测方法,以适应日益复杂化、多样化的数据环境要求。重心权有理插值函数作为一类重要的逼近工具,其主要研究工作集中在理论性质的深化,而在实际问题中的应用亟待进一步探讨。鉴于此,本文从新的视角出发,基于重心权有理插值函数对传统的预测理论和方法开展研究,以期为预测建模提供新途径、为科学决策提供新方法。本文选取“基于重心权有理插值函数的预测模型研究”这一主题,综合应用管理学、计算数学、经济学和统计学等学科知识,采取理论分析与实验研究相结合的方法,从以下两方面开展:一是在理论分析方面,对传统的重心权有理插值函数进行推广,并证明其在收敛性能等方面的优越性,为构建新的预测模型提供扎实的理论基础;二是在预测建模方面,以几类经典的预测模型为研究对象,如模式识别领域的支持向量机(SVM)分类预测模型、统计回归领域的非参数回归和半参数回归预测模型、“贫信息”的灰色预测模型等,基于重心权有理插值函数构造新的预测建模方法,并应用于实际问题研究。本文的主要工作和创新点如下:(1)理论上,推广了重心权有理插值函数,并证明其具有以下优良性质:第一,满足二阶导数插值条件;第二,在实数范围内无极点;第三,无论插值节点如何分布,在任意插值区间,插值函数及其一阶、二阶导函数均具有高阶收敛性质;第四,函数可以写成重心权形式。最后,数值实验表明,推广后的重心权有理插值函数的收敛阶数至少是传统重心权有理插值及三次样条插值函数的三倍以上。(2)基于重心权有理插值函数,从函数逼近角度及核函数性质出发,构造了一种新的SVM模型的核函数(BRI),从理论上证明此核函数能获得较好的学习能力和泛化能力。数值实验表明,基于重心权有理插值函数的SVM模型不仅具有较高的分类精度,而且能够改善传统核函数对数据分布的依赖性。(3)基于重心权有理插值函数,提出了一种新的非参数回归预测模型,并给出一整套建模过程,包括基函数的构造、参数估计、诊断检验、节点选择、模型预测等。与传统的样条函数方法相比,提出的模型具有以下优势:拟合的曲线光滑性更好、模型计算复杂度较低、参数估计存在明确的含义。最后,将该模型应用于上海证券交易所交易的国债利率期限结构研究,结果显示:该模型在结构分析、计算复杂度、预测能力及经济内涵等方面均优于传统模型,能够有效提高国债利率期限结构拟合与定价的准确性。(4)基于重心权有理插值函数,构建了一种新的半参数回归预测模型,并给出了数学表示、参数估计与检验、模型选择与模型预测等建模技术。该模型拟合的曲线光滑度较高且具有明确的解析式;在选取相同节点的条件下,待估计参数的个数更少且富含实际意义,从而得到比传统样条函数方法更为深刻的结果。最后,将该模型应用于我国菲利普斯曲线研究,并在此基础上对通货膨胀率进行预测,结果显示,该模型不仅能够充分发掘我国菲利普斯曲线的非线性特征,而且有效提高了通胀率预测的精准度。(5)在灰色预测建模方面,首先,分别利用数乘变换和正交变换有效改善了 GM(1,1)模型的病态性问题。其次,基于重心权有理插值函数,构造一种新的GM(1,1)模型,其主要优势体现在:提高背景值重构的质量;优化了模型初始条件及参数。最后,基于向量值重心权有理插值函数,给出多变量MGM(1,m)模型背景值构造的新方法,在减小计算量的同时提升了模型的预测性能。实验研究表明,以上方法充分改善了模型的稳定性与适用性,有效提高了模型的预测精度。本文成果扩展了传统预测模型的研究思路,丰富了传统预测模型建模的方法体系,对改善和提高传统预测模型的建模效率具有重要的理论价值和实际意义。