论文部分内容阅读
当今的客户已经成为左右企业发展的一种决定性的力量。菲利普·科特勒指出以客户为中心的企业不仅需要建设产品,更重要的是建设客户。在现实的市场条件下任何企业要想成功,必须以客户需求为出发点,以满足市场或客户的需求为归宿,把客户对企业的信任和忠诚作为企业最重要的资产。国内外的理论和实践都已证明了忠诚的客户能为企业带来稳定而丰厚的利润,一个企业拥有了忠诚的客户群,就拥有了稳定的利润源和竞争优势,拥有了对市场的控制权。一个客户能保持忠诚越久,企业从他那里获得的利益越多。 企业在培养客户忠诚时必须首先明确不同客户对企业具有不同的价值,企业应向最可能盈利的客户推销产品。基于客户差别及企业能力的限制,任何一个企业都不可能为市场上的全体客户服务。为了能与无处不在的竞争者竞争,企业需要确定它能为之最有效服务的细分市场,把目标关注于为企业带来最大利润的客户,提高他们的忠诚度。为了获得客户的忠诚,企业必须为客户提供优异的价值,因为只有价值才能驱动客户忠诚,增进客户的重复购买行为并增加企业利润。 基于以上的思想,借鉴西方管理学研究的成果,本文针对客户价值分析的理论和方法展开讨论,在客户分类时采用基于粗糙集的数据挖掘技术。 企业常用的客户分类方法是基于经验方法和统计方法的简单划分,这些方法虽然曾得到广泛应用并取得良好效果,但却无法满足日益增长的数据量以及日益复杂的分析需求,而基于数据挖掘技术的分类方法,为进行更深入的客户细分提供了新的实现手段。 所谓数据挖掘也称为知识发现,是从大型数据库和数据中提供潜在价值的知识和规则的过程。数据挖掘技术有各种模式,如关联分析、分类和预测及聚类等。各种模式各有侧重,其中有一些已经研究得较为成熟,研究成果也较多,如挖掘关联规则、预测方法和分类模式中的一些其他方法。而分类模式中关于粗集的挖掘技术目前研究的人还不是很多,相应的研究成果也较少。因而基于粗集的数据挖掘技术有很大的研究价值。粗集理论是针对不确定性问题提出的,它的特点是不需要预先给定某些特征或属性的数量描述,而是直接从给定问题的描述集合出发,通过不可分辨关系和不可分辨类确定给定问题的近似域,从而找出该问题的内在规律。