一种学习效应模型的两类排序问题

来源 :曲阜师范大学 | 被引量 : 0次 | 上传用户:dickensking
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
排序问题作为一门应用科学,是运筹学的一个重要方面。自从Biskup把学习效应应用到排序问题中以来,带有学习效应的排序问题就备受国内外学者的关注,是目前一个比较活跃的排序分支,并且有着广阔的应用前景。本文以此为基础,研究了在单机情况下,加工时间依赖于工件位置的间歇批生产问题和成组排序问题。本文的结构按照如下安排:第一章首先介绍了排序问题的一些相关概念和符号描述,给出了本文所涉及的预备知识,并且简要概述了文章的主要问题和研究结果。第二章主要研究了机器带有学习效应和遗忘效应,目标函数分别为最大完工时间和总完工时间的间歇批生产的单机排序问题。根据生产线的间隔时间的大小可能会出现遗忘效应,根据遗忘效应的程度讨论了批与批之间无学习效应传递,有部分学习效应传递,有完全学习效应传递三种情形。前两种情形下问题是多项式可解的,针对第三种情形,给出了在每一批内工件个数都相等这一特殊情形下的多项式时间算法。第三章主要讨论了机器在加工工件时带有学习效应的条件下,目标函数分别为总完工时间、最大延误和总误工时间的单机成组排序问题。文中对于第一个问题给出了多项式时间算法,对后面两个问题,给出了在工件的加工时间与交货期一致的条件下的多项式时间算法,并且证明了所有目标函数下算法的最优性。
其他文献
随着社交媒体的发展,政治领导人可以与公众进行即时交流与互动,政治传播进入了全新发展阶段。越来越多国家领导人试图通过社交媒体扩大自身影响力,塑造良好个人形象。诸如印度总理莫迪、美国前总统特朗普等国家领导人在社交媒体政治传播中使用了有别以往的话语策略,这些话语策略促使研究者使用多模态视角对其进行分析。多模态话语分析能在传统话语分析的基础上,把文本、图像、视频等不同模态话语进行整合,探究其协同作用下传达
随着车联网技术的快速发展和普及,以车联网技术为依托的UBI车险产品应运而生。UBI车险产品基于车主的驾驶行为数据、车辆行驶数据和路况数据,生成驾驶行为评分,生成更加合理的车险定价,为车险产品的研发提供了新的思路和方向。目前,UBI车险产品在发达国家应用广泛,而国内随着车险改革的推进,越来越多的保险公司和科技公司都开始了UBI车险产品的布局和研发。UBI车险产品的设计、研发和推广需要大量行车数据、高
近年来,在国家相关政策对农村金融发展的大力支持下,我国农村金融市场实现稳步发展,金融服务水平逐渐提高。然而,尽管农村金融体系得到了发展完善,农村金融仍然存在较大供需缺口。因此,各主体都在积极探索和构建多层次、多主体的金融体系,创新金融服务和金融产品,以满足农村金融需求,推进乡村振兴战略。随着信息技术的发展,新兴互联网金融模式在农村金融市场迅速兴起,给解决农村金融供求矛盾提供了一个重要思路。基于以上
烯酮亚胺具有C=C=N的结构单元,可以发生各种化学反应,包括电环化、环加成、重排反应、亲核、亲电和自由基加成等反应,因此,它是一种重要的合成中间体,可广泛用于含氮有机化合物的合成。炔胺转化法是合成烯酮亚胺最常见的方法之一,目前有热重排反应、钯催化的aza-Claisen重排和碱促进的异构化反应等策略,但是,这些方法还存在着条件苛刻、需使用昂贵的钯催化剂、强碱或官能团兼容性差等局限。因此,发展新型炔
随着经济发展和对外开放程度的不断加大,企业高科技项目受宏观环境、行业竞争以及其他因素的影响越来越大,不确定性也随之增大,因此利用科学合理的方法来研究和评估高科技投资项目的增长潜力和投资价值已经成为高新技术企业面临的关键性问题。传统的投资决策方法(如净现值法)存在较大局限性。一方面,它认为管理者只能被动地进行战略决策,而忽略了管理者的主观能动性;另一方面,它假设投资项目的未来收益会遵循预期,没有考虑
双重股权结构,即同股不同权,在欧美已有数十年的实践历史。随着我国许多企业接二连三在海外使用双重股权结构上市,双重股权结构逐渐被大众接纳并运用。在传统的单一股权结构公司中,股东行使着他们对应的权利,按股权比例取得剩余索取权。但在双重股权结构的公司中,部分股东会被给予更多的投票权,意味着公司的现金决策在很大程度上被少数拥有较多投票权的人掌握,因此会对公司的现金持有水平产生重大的影响。本文利用2005年
部分因析(FF)设计在因子试验中经常用到,当某些因子的水平难以改变或控制时,实施一个完全随机的FF设计是不现实或者不可能的,这时常采用部分因析裂区(FFSP)设计来满足这一特殊要求.如果在一个试验中同时包含二水平的因子和四水平的因子,且某些因子的水平难于改变或者控制,这时一个2(n1+n2)(k1+k2)4m裂区设计就可以运用.本文主要考虑正规的2(n1+n2)(k1+k2)4ω14s1裂区设计,
十九大报告明确提出“提高直接融资比重,促进多层次资本市场健康发展”,体现出直接融资在促进资本市场发展中的重要作用和地位。虽然近十余年来中国股票市场发展迅速,但是从融资结构来看,我国直接融资占比仍然较低。家庭作为资金的主要盈余部门之一,其对股票资产需求的不足是我国直接融资占比不高的一个重要成因。近年来我国居民家庭拥有股票账户的概率以及对股票的配置比例均较低,与此同时我国家庭住房资产占家庭资产比重却相
学位
本文研究(?)-正则半群.全文共分为四章.第一章是引言与预备知识,介绍(?)-正则半群的概念及相关结果,给出(?)-正则半群的若干性质.第二章研究(?)-正则半群的特征集,给出特征集的正规划分的概念.同时证明关于特征集的任意正规划分N,存在S(Q)的使得ctrμN=πN的最大强(?)-同余μN.第三章引入(?)-正则半群的(?)-满(?)-自共轭子半群的概念,并利用此概念给出(?)-正则半群上的群