考虑折返进路占用的城市轨道交通列车运行图优化研究

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:newboard
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,我国城市轨道交通线路的发车频率随着客流需求的增加而逐渐提高,高密度的运输服务对折返站的折返效率提出了更高的要求。折返站作为线路运营中的关键节点,其折返能力直接影响到整条线路的服务水平。本文从运营角度出发,在传统列车运行图编制的过程中同时优化列车在折返站内部的进路占用时长和进路排列,旨在进一步提高线路通过能力,主要的研究内容如下:(1)通过分析国内城市轨道交通线路的运营形势,阐明了本文的研究意义。归纳了国内外文献中关于列车运行图优化、折返能力计算以及车站进路排列等内容的研究现状,明确了本文的研究方向和创新之处。(2)以典型站前折返站型和站后折返站型为研究对象,概括了不同折返方式的折返过程,总结出折返间隔的计算方法。并对特殊运营模式中的折返瓶颈站点进行了剖析。基于折返组织理论和累积0-1变量对典型站前折返站型和站后折返站型构建了折返组织过程的数学模型。(3)分别建立了大小交路和快慢车运营模式下考虑折返进路占用的列车运行图优化模型。前者以线路通过能力最大为优化目标,综合考虑列车运行、折返接续相关的各类约束,同时优化列车在各个站点的到发时刻、间隔以及列车折返进路;后者以最大化线路通过能力和最小折返冗余时间为目标,通过合理调整快、慢车之间的行车间隔、越行情况,计算快、慢车在各个站点和折返站轨道资源的到发时刻。此外,分别利用商业求解器和遗传算法对两类模型进行求解,通过小规模算例验证了模型和算法的有效性。(4)以虚拟线路为背景设计案例进行实证分析。在大小交路运营模式中,验证了考虑折返进路占用的模型优势在于充分压缩列车折返间隔的冗余时间,提高折返站折返能力。并探讨了折返站站型对线路通过能力的影响,分析了当小交路开行比例较大时,小交路发车间隔的变化对列车在折返站折返接续的影响。在快慢车运营模式中,主要对比了不同快、慢车开行比例和车底类型条件下的线路通过能力和折返接续情况。案例结果在证明折返组织模型具有较高适用性的同时,也为在特殊运营模式中提供高效、安全的列车服务提出了一些参考性建议。
其他文献
在我国高速铁路网络日益完善条件下,旅客出行需求稳步增长,高品质、多样化、个性化需求不断增强,客流复杂程度将远大于成网之前。为适应这种变化,需研究更加科学高效、经济合理的高速铁路网络化客流输送方案。本文以高速铁路网络为研究对象,依据最优化、出行行为、复杂网络等理论,结合统计分析、数学建模等方法,提出基于出行选择的网络化客流输送模式研究方法,解决了成网条件下高速铁路客流输送问题。主要研究工作及成果如下
伴随使用年限的增长,高速动车组的运维检修需求日益增加,较高的运维成本也逐渐成为制约高速铁路可持续发展的关键因素之一。列车通信网络作为高速动车组的重要子系统之一,承担着传输控制、诊断和通信等数据的重要任务。但当前列车通信网络缺乏有效的状态监测手段,无法准确评估网络健康状态,计划检修和事后检修的维修方式可能造成维修时机滞后、维修过度以及维修成本居高不下的状况。因此,在保障列车安全高效运行的前提下,对列
有砟轨道是高速铁路的重要轨道结构型式之一,但作为一种散粒体结构,有砟轨道在高速列车循环荷载作用下会发生道砟破碎、粉化、脏污等劣化现象。道床脏污会引起道床排水受阻,在降雨天气作用下,道床内部会逐渐形成积水,降低了道砟颗粒之间的摩阻力,减小了道床阻力,严重时会导致粉煤渣与积水形成浆液包裹道砟,形成道床板结,严重影响了道床的服役性能。因此针对雨水条件下有砟轨道力学特性的研究,对维持有砟轨道在复杂气候条件
地铁车辆载客量大、启停频繁、线路复杂、高频率的使用对车辆关键结构疲劳可靠性提出了极高要求。转向架构架为地铁车辆走行系统极关键的部件,按全寿命周期进行设计与运用,其疲劳性能对列车运行安全至关重要,明确服役载荷能够极大地保障构架疲劳可靠性。本文在获取构架实际载荷基础上,针对载荷特征进行研究,建立了符合实际运用条件的损伤一致载荷谱,并开展了载荷谱的损伤预测应用研究,为建立符合国内地铁列车运营情况的转向架
众所周知,城市轨道交通是解决大城市各种交通问题最有效的途径之一。随着行业发展与技术进步,城市轨道交通逐渐演化出了多种制式类别,这些制式在运量、驱动导向、速度等方面有显著差异。每种类别的城市轨道交通制式有各自的交通功能,可以满足不同的交通需求,明确城市中某一条城市轨道交通线路的功能并选用合适的制式匹配这一需求的过程,即为城市轨道交通制式选择。但城市轨道交通往往具有建设难度大,造价高的特性,需要在建设
近年来,随着电气化铁路的发展,车网匹配问题日益突出,随着“交-直-交”型电力机车的投入运行大幅降低了牵引网中的谐波含量,但其脉宽调制控制方式会产生高次谐波注入到牵引网中,发生高次谐波谐振、放大现象,高次谐波会不仅会对27.5kV侧电气设备及机车造成危害,还会对110kV或220kV电网以及所自用电系统内设备产生损害,严重威胁牵引供电系统的安全运行。本文首先对当前国内外对车网耦合以及牵引网高次谐波的
车轴作为重要的铁路车辆关键部件,其在列车运行过程中不仅要承受车辆主要重量,还要经受来自轨道不平顺等激励,受力复杂。由损伤所引起的车轴断裂事故一经发生必会造成巨大灾难。为确保其在运行时具有良好可靠的服役性能,目前,基于断裂力学的损伤容限评定方法以及定期探伤,保障了车轴的服役安全。为制定科学、合理的车轴超声探伤周期,本文以EA4T材质车轴作为研究对象,开展裂纹扩展寿命研究。具体工作如下:(1)为确定疲
随着人口增长和国际市场的扩大,提高轨道交通运输效率可以运输更多乘客和货物,同时响应了国家新时代交通强国政策。但是受成本、资源及环境的限制,不可能无限制地通过新建线路提高运力。虚拟编组可以提高既有线路的运输效率,是解决这一问题的有效途径。实现虚拟编组有以下关键问题:首先,减小虚拟编组列车的速度追踪误差,实现虚拟编组列车编队的协同控制;其次,要保持虚拟编组列车的追踪距离,解决编队内列车的防撞问题;最后
我国大多数地铁采用无砟轨道结构,其弹性主要由扣件系统来提供。e型弹条扣件由于弹性好,养护维修方便,在我国地铁中被广泛使用。然而随着城市规模逐渐扩大,居民生活节奏不断加快,城市发展对地铁列车的行驶速度、客运负载以及行车间隔等方面要求也越来越高,轨道结构损伤和破坏现象开始频繁出现,多地线路都曾出现过扣件螺栓断裂问题,严重影响了地铁列车的正常运营,对行车安全造成了直接的威胁。因此本文针对地铁e型弹条扣件
随着国民经济的发展和科技水平的快速提高,我国各行业已逐渐实现高质量蓬勃发展,国家对卷钢的需求量也随之增加。卷钢作为我国的基础工业产品,运输里程长、自身重量大且生产地大多处于我国的内陆地区,这些鲜明特点使铁路运输成为了最常用的卷钢运输方式。由此可见,针对卷钢的铁路装载加固安全至关重要,它不仅决定了铁路卷钢运输的安全性,还关系着铁路货物运输效率等因素。卷钢座架是现阶段极其常见的一类铁路货物装载加固装置