论文部分内容阅读
水稻是我国第一大粮食作物,履带式联合收获机是水稻机械化收获的主要作业装备,为兼顾作业效率和收获质量,收获过程中需根据水稻生长情况实时动态调整收获机前进方向、作业速度、割台高度、拨禾轮位置和工作部件运行参数,解决其操作要求高和劳动强度大的有效途径之一为机组自动导航系统,能够实现收获路径的自主规划跟踪,提高作业效率,降低劳动强度,延长作业时间。为提升导航系统对履带式水稻联合收获机的适应性,针对“满幅作业”的收获要求并结合水稻收获时田间土壤含水率高、承压能力弱的环境特点,开展履带式水稻联合收获机辅助导航系统关键技术研究,包括导航信息采集与数据处理方法、水稻待收获区域视觉识别与路径提取方法、作业路径跟踪算法与控制策略和导航系统末端执行机构,并进行试验验证。主要研究内容包括:(1)在全面系统比较分析国内外农业装备定位导航技术研究进展与发展现状的基础上,明确了履带式水稻联合收获机辅助导航系统的功能要求和作业特点及其对应的主要技术与装置,包括导航信息采集与数据处理、水稻待收获区域识别与作业路径提取、作业路径跟踪控制和辅助导航系统末端执行机构。(2)分析了履带式联合收获机田间行驶基础理论和水田行驶状态影响要素,构建了水田转向运动参数理论值修正模型。(1)基于地面力学理论和运动学理论,建立了履带-土壤耦合系统力学模型和履带式联合收获机稳态转向运动学模型;明确了土壤物理机械参数、履带式联合收获机结构参数和履带运动参数等是影响履带式联合收获机田间行驶状态的主要因素。(2)测定了收获期水稻田土壤物理机械性质为:含水率23.8~31.2%,塑限25.9~27.8%,液限34.8~36.9%,容重1.35~1.68g·cm-3,孔隙度18.3~26.4%;结果表明土壤含水率高、空隙度较大、较为疏松,处于可塑状态,在外力作用下易形变,相较于硬地面和坚实土壤,履带式联合收获机在水田中行驶易沉陷,滑移率滑转率大。(3)开展了履带式水稻联合收获机水田转向运动学试验,结果表明水田中履带式联合收获机实际转向半径大于理论转向半径,实际转向角速度小于理论转向角速度;不同前进速度下,实际转向半径的变化趋势与其理论值相反,实际转向角速度的变化趋势与其理论值相同,但变化率小于理论值。(4)通过对比分析多种函数模型对转向半径修正系数、转向角速度修正系数与前进速度关系的拟合度,构建了水田转向运动参数理论值修正模型;转向半径修正系数为前进速度的二次函数,拟合方程为Kρ=0.751vc2-0.392vc+1.819,转向角速度修正系数为前进速度的指数函数,拟合方程为Kω=0.9187e-0.745vc,该研究为履带式联合收获机辅助导航系统的设计提供了理论依据和数据支撑。(3)设计了履带式水稻联合收获机辅助导航系统,确定了辅助导航系统的主要功能与实现方法,并依据其功能要求构建了辅助导航系统“三单元+一机构”的总体结构,可满足履带式联合收获机水稻收获辅助导航的实际需要。(1)分析了履带式水稻联合收获机辅助导航系统的主要功能,包括导航信息数据采集处理,收获作业路径提取跟踪;设计了辅助导航系统总体结构,包含导航传感器及其信号采集与数据处理单元、收获图像处理与作业路径提取单元、作业路径跟踪控制单元、末端液压转向执行机构。(2)针对田间地表起伏和履带式联合收获机工作振动造成的导航数据稳定性降低问题,设计了用于融合RTK-GNSS数据和IMU数据的扩展卡尔曼滤波器,输出位置坐标、航向角和前进速度等关键导航信息;试验表明经扩展卡尔曼滤波器融合RTK-GNSS数据和IMU数据后,航向角监测值的标准差为0.039 rad,相比滤波前降低了0.045 rad,数据监测波动减小;通过定位定向数据推算的履带式联合收获机位移距离平均误差为0.021 m,转向角度平均误差为0.36°,航位信息监测结果准确。(3)研制了履带式联合收获机串并联组合式液压转向系统,可实现人工操作转向与辅助导航控制的自由切换;以转向油缸推力大于600 N、响应时间小于0.1 s为设计指标,确定了主要液压元件参数;试验表明履带式联合收获机直线行驶50 m的平均偏驶距离为0.25 m,偏驶率为0.5%,直线行驶偏驶量小;标准信号激励下履带式联合收获机转向响应延迟为0.2 s,角速度响应标准差为0.017 rad/s,超调量小于3.8%,转向响应延迟低、转向过程稳定,满足履带式联合收获机辅助导航的需要。(4)提出了一种水稻待收获区域视觉识别与收获路径提取方法并应用。(1)设计了水稻收获原始图像预处理方法:构建了畸变图像逆变换矫正模型,基于最大似然估计和Levenberg-Marquardt算法标定相机内部参数、外部参数和畸变参数;设计了图像噪声二维高斯平滑滤波器,使用5×5像素的矩形模板对窗口内像素进行卷积运算抑制噪声干扰;试验表明,平面靶标图像特征点识别的平均像素误差小于0.17像素,焦距标定误差小于0.34 mm,相机参数标定准确,可以准确矫正图像畸变并完成水稻收获图像的预处理。(2)对比分析了水稻收获图像在HSV、HSI和RGB三种颜色空间模型中的参数分布特征,提出了考虑超红特征2R-G-B的水稻收获图像二值化综合阈值算法,分割水稻待收获区域图像,并基于膨胀-腐蚀重构的形态学闭运算,降低二值图像颗粒噪声,增强待收获区域边界。(3)基于已收获区域和待收获区域图像像素列垂直投影统计特征,动态决策感兴趣区域,提高作业路径拟合效率;基于像素行灰度值函数与阶跃函数的互相关系数,判定待收获区边界点,并利用三次B样条曲线拟合待收获区边界,作为收获作业目标路径。(4)构建了像素位置与空间位置坐标变换矩阵,建立了视觉路径与空间路径的映射关系;试验表明,视觉系统距离识别的平均误差为9.6 mm,偏差率为1.92%,角度识别的平均误差为0.77°,误差率为2.7%。(5)在顺光、逆光、强光、弱光环境下分别开展了中粳798和临稻20两种水稻待收获区边界线提取试验,结果表明,中粳798待收获区边界平均识别误差为23.9~38.7mm,在强光环境下误差最小,在逆光环境中误差最大;临稻20待收获区边界平均识别误差为38.9~55.8 mm,逆光环境下误差最小,弱光环境下误差最大,单帧图像平均处理时间38 ms,满足田间环境下水稻收获路径快速提取的需求。(5)提出了履带式水稻联合收获机作业路径跟踪算法与控制策略。(1)建立了履带式水稻联合收获机行进路径航位偏差分析模型,推导了履带式联合收获机与目标点相对位置几何关系,构建了位姿误差状态矩阵;为自适应调整航位偏差模型中的关键参数,探究了履带式联合收获机转向响应瞬态特征,分析了控制信号激励时间对转向率响应曲线线性区间的影响,并以线性区间大于90%为设计依据确定了前视距离动态调整策略。(2)推导了履带式水稻联合收获机寻线路径离散时间递推方程,构建了履带式联合收获机圆弧-切线寻线追踪模型;仿真分析表明,相较于未考虑水田转向实际特征的纯追踪模型,该模型路径纠偏的最大超调量、上升时间和调节时间分别减小了44.2%、16.3%和28.0%,有助于降低履带式联合收获机的纠偏超调量,提高寻线跟踪的收敛速度,减小控制模型误差。(3)设计了履带式水稻联合收获机路径跟踪模糊控制器,分析了控制器主要参数对控制效果的影响;基于粒子群算法,构建了模糊控制器参数自寻优整定器;仿真分析表明,经粒子群算法优化模糊控制器后,转向率偏差超调量由14.2%减少至4.6%,上升时间和调节时间分别由2.1 s、5.6 s降低至1.7 s、2.1 s,提高了作业路径跟踪控制器的响应速度和稳定性。(4)提出了基于LS-SVM的转向特征识别方法,通过在线回归构建控制信号占空比与实际转向率之间的关系模型,修正模糊控制器输出的控制信号占空比;开展了回归模型关键参数2因素3水平全因子试验,结果表明惩罚系数为10、核函数参数为20时,模型对测试集数据的拟合相关系数为0.9608,均方根误差为0.0040,对异常值不敏感;运用该方法修正模型控制器输出量后,水田中履带式联合收获机转向率响应值相对于期望值的平均误差可降低至0.29°,相较于修正前减小了0~55.7%,提升了辅助导航系统对水田环境的适应性。(5)辅助导航直线路径跟踪控制试验表明:当履带式联合收获机前进速度范围在2.16~3.60 km/h时,行进路径平均横向偏差为4.3~5.8 cm,平均最大偏差为10.6~17.2cm,均方根误差为1.92~3.60 cm;在初始偏差为1 m、前进速度为2.52 km/h的试验条件下,路径纠偏上升时间为7.5 s,稳态调节时间为14.7 s,最大超调量为14.8 cm,平均稳态误差6.4 cm,所提出的履带式联合收获机辅助导航路径跟踪控制器可稳定收敛,能够实现行进路径纠偏与稳定追踪。(6)以平均割幅偏差、最大割幅偏差和割幅率为辅助导航系统评价指标,开展了履带式水稻联合收获机辅助导航水稻收获田间试验,对比分析了不同前进速度下辅助导航系统的作业效果,结果表明辅助导航系统可识别水稻待收获区域边界,履带式联合收获机能够在不漏割的前提下根据水稻边界线自主调节作业路径,在2.45~4.03 km/h速度范围内,收获作业平均割幅为1.99~2.05 m,平均割幅偏差为0.15~0.21 m,最大割幅偏差为0.29~0.39 m,割幅率为90.5~93.1%,满足水稻机械化收获作业的实际需求。创新点1:提出了可有效提高机械化收获边界线识别精度、减小运算量的组合式水稻待收获区域边界线视觉提取方法,即“像素列垂直投影统计+像素行阶跃相关对比+三次B样条曲线拟合”的组合算法。创新点2:设计了可修正水田实际转向响应与理论模型预测值之间误差的履带式联合收获机路径跟踪控制算法,该方法基于LS-SVM在线识别履带式联合收获机的实际转向特征,提高导航系统对水田的适应性。