基于图像分类的领域自适应方法研究

来源 :华北电力大学(北京) | 被引量 : 0次 | 上传用户:qvril
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,以深度学习为代表的人工智能技术取得了快速发展和广泛应用。然而,在实际应用中,人工智能的性能还是依赖于大量的标签数据,模型泛化性能不高。因此,如何减缓对标签数据的依赖并提升模型泛化性能是目前人工智能领域亟待解决的问题。领域自适应(Domain Adaptation,DA)就是该问题较好的解决手段,其旨在利用来自源域的知识帮助在新且相关的目标域上的学习。本文从损失函数、学习框架以及网络结构三个方向出发,针对半监督和无监督的DA问题,提出了两种DA算法:基于高效标签传播的DA算法和基于互惠归一化的DA算法。(1)从损失函数和学习框架出发,当在源域中有大量标签数据但目标域中的标签样本很少时,半监督DA方法在大规模图像分类任务中已显示出巨大潜力。现有的DA解决方案通常专注于两个域之间的特征对齐,而很少关注在目标域中已学到的表征的辨别性能。因此,本文提出了高效标签传播((Effective Label Propagation,ELP),通过使用有效的域间和域内语义信息传播来解决此问题。对于域间传播,本文提出了一个新的循环差异损失,以鼓励两个域之间语义信息的一致性。对于域内传播,本文提出了一种有效的自训练策略,以减轻目标域伪标签数据中的噪声并提高目标域中的特征辨别性。作为一种通用方法,本文的ELP可以轻松地应用于各种DA方法,并且可以促进它们在目标域中的特征识别。在公开基准测试集的实验表明,ELP不仅能提升主流半监督DA算法性能,还可以提高无监督DA算法的性能。(2)从网络结构设计出发,批量归一化(Batch Normalization.BN)在深度神经网络中得到了广泛的应用,已被证明能代表领域相关的知识,因此对于诸如无监督DA之类的跨域任务是低效的。现有的针对DA的BN变体方法中.大多数是在归一化模块的对应通道中聚合源域和目标域的知识。然而,跨域的对应通道特征之间的未对齐常常导致次优的迁移性能。本文利用跨域关系提出了一种新的归一化方法,互惠归一化(Reciprocal Normalization,RN)。具体而言,RN首先有一个互惠补偿模块,其基于跨域通道的相关性来获取两个域中每个通道的补偿。然后.RN开发了互惠聚合模块:以将特征及其跨域补偿组件自适应地聚合。作为BN的替代方案,RN可以轻松地集成到流行的DA方法中。在公开DA基准数据集上各种DA场景的实验表明,RN显著优于现有的归一化方法同行.并有助于主流DA方法取得更好的结果。
其他文献
离散纵标法(SN)是常用的确定论屏蔽计算方法之一,空间网格划分对于SN方法求解粒子输运问题的计算精度至关重要。复杂屏蔽模型存在强非均匀效应,要求不同区域的几何描述精度不同。采用传统笛卡尔直角网格进行全局均匀细分往往会引入难以承受的计算成本,对输运计算效率和计算机存储提出挑战。本课题针对大尺寸复杂屏蔽问题,基于SN方法研究非均匀间断网格并行输运扫描算法,并采用角度多重网格加速方法进一步提高并行计算效
车联网(Internet of Vehicles,IoV)作为物联网(Internet of Things,IoT)的延伸,不仅可以为人们提供高效和舒适的驾驶体验,而且能够促使交通业务的多样化。为了获得高可靠性与低时延的车用无线通信技术(Vehicle To Everything,V2X)服务,广泛部署的移动边缘计算(Mobile Edge Computing,MEC)被认为是一个最有潜力的方案之
深度卷积神经网络被广泛应用于单图像超分辨率重建领域,显著提升了重建方法的性能。加深网络深度往往可以获取更高的性能。但是,当前超分辨率重建方法常采用增加卷积层层数或者卷积层个数的方式提高重建图像的性能,当卷积层层数或者个数增加时,模型的参数量,运行时间以及计算量也随之增加。现实世界中,由于硬件设备资源有限,此类方法实际应用中表现大打折扣。本文通过调研分析当前性能优越的单图像超分辨率重建方法,提出一种
隐写术是一种将信息或数据隐藏到数字图像中的技术。根据是否带有隐藏信息,可以将图像分为含密图像和载体图像。数字图像在表示上具有很高的冗余度,因此可用于隐藏数据。图像隐写术主要可以分为空间域和变换域。图像隐写术的最基本技术是利用最低有效位(LSB)替换隐写算法。存在大量可以将秘密信息或数据隐藏到数字图像中的隐写技术。每种方法各有利弊。因此,有必要建立更准确的隐写分析技术,能够检测出使用各种隐写方法所产
在数据库数据信息安全防护的过程中,不仅要避免外部攻击带来的重要信息泄露危害,同时还需要时刻关注内部违规引起数据库操作安全风险,尤其要注意数据库运维过程中带来的安全风险。现阶段运维安全审计系统对数据库的运维仅限于事故的追责,并没有对运维人员的权限及操作进行合理的管控。因此急需在数据库操作中加强运维管控技术来实现安全保障。本文从数据库运维操作的安全性出发,研究当前数据库运维操作过程中存在的缺陷和风险,
从自然场景获取的图像中读取文本,也被称为场景文本识别,是一项具有挑战性的计算机视觉任务。然而,场景文本识别模型的训练需要采用大型的训练集,训练集的体量和复杂性增加不可避免的带来了样本噪音的问题。样本噪音可降低场景文本识别模型的识别准确率从而影响模型的可用性,精心制作的少量的样本噪音就可对模型的可用性造成不可忽视的破坏。这种利用样本噪音对模型完整性、可用性造成破坏的攻击方法被称为数据投毒攻击。目前对
随着区块链技术的日益成熟,越来越多的系统以区块链为底层架构。而日益增多的物联网设备也产生了大量的数据。毫无疑问,这些数据被协同处理并共享后将产生更大的数据价值。考虑到这些数据分属不同的实体或个人,所以用安全多方计算来设计数据处理共享方案能很好的兼顾数据安全和隐私保护这两点要求。本文围绕区块链和安全多方计算技术展开相关研究。以区块链为基础,本文分别从横向并列的三个不同的角度进行研究:安全多方统计计算
单图像超分辨率重建是计算机视觉领域经典问题,旨在从一个给定的低分辨率图像中恢复出高分辨率图像。近年来,基于深度卷积神经网络的图像超分辨率技术取得了突出进展,许多有效方法相继被提出。但是,当前大多数方法通过简单堆叠残差块方式增加网络深度,虽然提升了网络性能,但是不可避免引入大量参数,限制了在移动或嵌入式等资源受限设备中的使用。本文提出了一种轻量级嵌套残差超分辨率网络,旨在构建一种参数量少、视觉效果良
对隐私数据保护在当今愈发重要。安全多方计算主要应用于隐私数据的联合计算,在保证隐私的前提下发掘数据的价值。安全多方计算提供了多方参与联合计算的解决方案,可以实现在不暴露隐私数据的前提下得到约定函数的结果。安全多方计算技术在电子投票方案的设计中发挥着重要作用。利用安全多方计算技术的安全电子投票方案可以有效的避免信息泄露的情况发生。基于安全多方计算的电子投票方案在具体实现中涉及很多相关领域的技术,包括
制定替代能源政策的必要性是因为人们认识到化石燃料也并不是无穷无尽的,并且对环境有着非常严重的危害。因此,在过去的几十年中,科学界一直致力于能够使用和转换可再生能源,特别是利用太阳辐射的系统。如今,使用太阳能集热系统作为供热来源的发电站相较于无储能系统的光伏电站,具有稳定性更高的优势,而且与有储能光伏电站相比具有储能成本低,使用周期长的优点。由于吸收器表面能流密度分布受到很多种因素的影响,而且能流密