论文部分内容阅读
随着信息技术和军事工业的发展,电磁辐射日益成为困扰人们的问题。为了解决这类问题,吸波材料得到了人们的关注。铁氧体和磁性合金是应用最广泛的磁性吸波材料,但是单一的磁性材料吸波效果并不能达到“薄轻宽强”的要求,为了达到更好的吸波效果,一般要求将介电性能好的和磁性能好的材料复合起来制备出既具备磁损耗性能又具备介电损耗性能的吸波材料。溶胶-凝胶法是一种常用的制备纳米材料的方法,该方法操作简便、成本低。本文针对传统吸波材料形貌单一、应用范围窄的缺点,采用溶胶-凝胶法结合后续的固相烧结制备出具有纳米线形貌的炭/铁钴合金复合吸波剂及三维复合吸波剂。同时我们也讨论了形貌形成的原因以及制备过程中的各种参数对吸波性能的影响及相应的吸波机制。以柠檬酸、硝酸钴和硝酸铁为原料,采用溶胶-凝胶法制备了金属-柠檬酸前驱体。将这个前驱体与尿素和氧化石墨烯溶液以不同比例混合,再经过900℃的固相烧结得到直径约20 nm,长约5μm的CoFe纳米线。纳米线通常附着在还原氧化石墨烯片层上,纳米线尺寸较为均一、分散。这种碳片层上生长的CoFe纳米线具有优异的吸波性能,在2~5 mm每个厚度下反射损耗的峰值均低于-10 dB,最低峰值出现在3.5 mm厚度、7.2 GHz处达到-36 dB,最大有效吸收带宽为6 GHz;而颗粒团聚状的吸波材料仅仅2.5~4.5 mm处最低峰值达到-10 dB,最低峰值也仅在3 mm、5.9 GHz处为-11 dB,最大有效带宽仅为1.5 GHz。以柠檬酸、硝酸镍和硝酸铁为原料,采用溶胶-凝胶法制备了金属-柠檬酸前驱体,将间苯二酚和甲醛溶液混合制备出RF前驱体,调整两者的比例并分别在600℃和900℃热处理条件下制备出C@CoFe。当RF与金属-柠檬酸前驱体质量比为1:1且在600℃下热处理得到的C@CoFe,其吸波性能不好,在2~18 GHz内没有反射损耗达到-10dB。当温度达到900℃时,该反应条件下得到的吸波材料也仅仅只在厚度为2 mm时,在16~18 GHz范围内反射损耗在-10 dB以下,其对电磁波的最大反射损耗达到-15.8 dB。当我们调整反应物比例到RF与金属-柠檬酸前驱体质量比为2:1时,600℃下热处理得到的C@CoFe在2~5 mm处从2~9.5 GHz其最大反射损耗均超过了-10 dB。当厚度达到2 mm时,其对9.5 GHz的电磁波最大的反射损耗达到-21 dB,最大有效频宽为5 GHz。当在900℃热处理后得到的C@CoFe时当吸波材料的厚度在2~5 mm之间变化时,吸波剂仅对频率为4~18 GHz的电磁波最大反射损耗超过了-10 dB。在该反应条件下,得到的吸波材料厚度为4.5 mm时,其在5.7 GHz处对电磁波的反射损耗最大达到-30 dB,最大有效频宽为7 GHz。通过冷冻干燥法制备出氧化石墨烯凝胶,再通过溶胶-凝胶法将金属-柠檬酸前驱体与RF前驱体的混合溶液填充入氧化石墨烯凝胶中,最后通过600℃热处理得到C@CoFe/r GO泡沫。产物具有明显核-壳结构附着在还原氧化石墨烯片层上,Co和Fe元素在泡沫中也是均匀分布。当吸波材料厚度为2.53 mm,在14.6 GHz最低反射损耗的峰值可达-46.2 dB,其有效吸波频宽也在2.53 mm处达到7 GHz。与上部分所制备出的C@CoFe同样是在600℃下反射损耗及有效频宽都有了大幅度提高,且这种三维结构还具有更多的应用场景。