论文部分内容阅读
本论文基于不连续伽略金理论,对应用于多尺度电磁问题的不连续伽略金积分方程方法进行了深入研究。论文提出了直观表述的不连续伽略金积分方程,以及解决低频崩溃问题的不连续伽略金增广型电场积分方程。针对实际工程中的复杂多尺度目标,研究了基于积分方程的区域分解方法,实现了结合快速算法和并行技术的高效数值计算求解器。本论文首先介绍了不连续伽略金积分方程方法的电磁理论基础。根据面等效原理和唯一性原理,以及场-源关系,建立求解金属体和介质体目标电磁散射的面积分方程;接着回顾了矩量法求解面积分方程的过程;最后详细地介绍了应用Loop-Flower基函数解决电场积分方程低频崩溃问题的过程,此外还研究了LoopFlower基函数对应Gram矩阵的谱性态,在理论上预测了Loop-Flower基函数对应Gram矩阵的条件数。为了高效地处理复杂多尺度目标中的非共形网格,本文提出了直观表述的不连续伽略金积分方程方法。针对由不连续矢量基函数引入的无限大线线积分,通过删去奇异点?邻域,使得无限大线线积分变成有界积分,并推导出任意空间位置下线线积分的解析计算公式,最终提出直观表述的不连续伽略金电场积分方程,不连续伽略金磁场积分方程,以及不连续伽略金混合场积分方程。不连续伽略金积分方程方法能够非常准确地分析共形网格和非共形网格,这种灵活性简化了目标建模和网格预处理过程。在低频时,不连续伽略金电场积分方程会遇到低频崩溃问题。为了解决低频崩溃问题,论文提出了不连续伽略金增广型电场积分方程方法。通过引入线电荷基函数来描述电流不连性,并且对不连续伽略金电场积分方程强加电流连续性方程,同时构造预条件改善阻抗矩阵的条件性态,最后借助扰动求解方法提高极低频求解时的数值精度。不连续伽略金增广型电场积分方程方法可以在任何低频率时快速地收敛到准确结果,为解决低频多尺度目标电磁问题提供了有效的求解方案。针对复杂多尺度目标电磁散射问题,提出了基于积分方程的区域分解方法。通过在区域分解后的子单元内定义RWG基函数,在边界上定义HRWG基函数,并借助不连续伽略金技术确保边界处的电流法向连续性,构造出针对复杂多尺度目标的不重叠非共形积分方程区域分解形式。其次,采用对角块预条件技术和基函数重排技术改善阻抗矩阵条件性态,加快迭代收敛速度。最后,采用自适应交叉近似技术加快子单元之间耦合矩阵的填充过程,并且通过OpenMP并行加速技术加快阻抗矩阵填充以及迭代求解过程。本章提出的方法能够准确而快速地求解复杂多尺度目标电磁散射问题。本文详细地研究了不连续伽略金积分方程系列算法以及在实际工程中的应用,丰富了积分方程方法的理论研究,同时也为多尺度复杂电磁数值仿真提供了强有力的解决方案。