论文部分内容阅读
金属腐蚀表征方法,从宏观到微观都得到了长足的发展。但对于高阻抗的材料体系,其低频区阻抗难以表征的问题仍然是金属腐蚀表征研究领域亟待解决的问题。本论文工作先从常用腐蚀电化学表征技术比较研究入手,深入分析各种腐蚀电化学表征方法的优缺点,提出现有常用稳态测试方法存在的不足,为暂态测试方法的进一步优化、开发奠定基础。比较研究结果显示:(1)采用0.001 Hz的电化学频率调制法(EFM)和Tafel曲线四参数拟合方法得到的腐蚀电化学参数相对最准确且丰富,但0.001 Hz的EFM耗时很长,而Tafel实验的极化电位较大,破坏试样表面的稳定状态。(2)大部分常用的腐蚀电化学表征方法是基于稳态测量,如果体系未达稳态,将会产生很大的测量误差。对于线性极化电阻法(LPR)和Tafel极化曲线测量法,当体系的扫描速率过大,将导致体系未达到稳态,产生较大的容性电流,从而造成较大的测量误差。电化学阻抗谱法(EIS)及电化学频率调制法存在类似的问题,为了提高测试精度,往往需要采用很低的测试频率,这大大增加测试时长,增大界面溶液、试样表面状态发生改变的风险,从而引起测量误差,这些也侧面证明了发展暂态测试技术的必要性。在电化学暂态测试方法的优化设计过程中,通过电化学RC回路理论频谱分析验证电化学时域数据经傅里叶时频转换的可行性,建立电化学双电层界面电位脉冲模型,深入论证分析了该暂态测试方法脉冲时间的合理性,提出了脉冲时间的控制原则及其适用体系,最终优化发展了一套基于恒电量法的优化电化学暂态测试方法,并提出了相应的实验参数体系及相关的实验流程。随着电化学腐蚀研究领域的不断拓宽和深化,微区电化学腐蚀体系,尤其高阻抗体系的微区电化学表征,其低频阻抗数据的获取更是一个日益突出、亟需解决的难点。本论文将上述暂态测试方法应用于微区高阻抗体系,开展2205双相不锈钢材料体系在3.5wt%NaCl溶液中的微区电化学特性的表征研究,获得了一系列腐蚀动力学参数,解决了其微区低频阻抗难以表征的问题,实验结果表明:(1)随着Φ10 μm孔径微孔中奥氏体相含量(γ%)的增加,微区体系的极化电阻Rp逐渐增大,二者近似呈“Rp(in Ω·cm2)=36001.9+739910.0×γ%(austenite phase proportion)”的线性关系。利用该电化学暂态测试方法,定量化表征了 2205双相不锈钢微区不同奥氏体相含量对DSS 2205在Φ10 μm孔径微孔中微区电化学腐蚀行为的影响。(2)与传统的EIS测量方法相比,该暂态测试方法的信号激励时长缩短5个数量级,大大降低了大时长信号扰动导致的微区界面破坏、界面溶液成分改变、自腐蚀电位漂移等一系列问题。另一方面,在数据处理中,通过快速傅里叶变换(FFT)将时域曲线转换成频域曲线,其界面阻抗信息比传统的EIS更准确、纯粹和丰富,且可以直接利用现有EIS数据分析的商业软件对FFT后所获得的Nyquist图进行拟合分析。该基于恒电量法的电化学暂态测试方法在测试过程中先充电后断电进行电极电位弛豫,断电后整个回路体系没有电流流经溶液,因此可以实现几乎不受溶液电阻影响的测试。借助于该暂态测试方法,几种贮箱用结构材料在溶液电阻极高的N2O4溶液中无法采用传统电化学手段表征的问题得以解决,它们在N2O4溶液中的相关电化学动力学参数获得了准确求解,为后续的科学研究及应用提供了可贵的测试数据和试验方法的借鉴。