论文部分内容阅读
超细/纳米晶WC-Co硬质合金因兼具高硬度和高强度(即兼有高耐磨性和高韧性的“双高”性能)而成为硬质合金的发展方向,制备性能优良的纳米W粉和WC粉是生产超细/纳米晶WC-Co硬质合金的基础和关键。本文针对氧化钨氢还原过程中因挥发-沉积作用而导致的W粉颗粒快速长大和异常长大的现象,采用碳氢协同还原法制备纳米W粉,然后分别通过阶段碳化法和碳氢协同还原-碳化法制备纳米WC粉,并采用低压烧结制备超细晶WC-Co硬质合金。论文系统研究了纳米W粉、WC粉及其烧结体的制备工艺、性能和机理,具体内容如下:1.研究了碳氢协同还原过程中的物相和形貌演变以及还原工艺参数W粉性能的影响。结果表明:还原过程遵循分步还原规律,非晶前驱体依次转变为WO2.9、WO2.72和WO2低价中间氧化物,最终还原为α-W,随着还原过程中发生晶型转变以及碳与水蒸气反应被消耗,还原产物变得疏松多孔。W粉平均粒径随前驱体配碳比升高而减小,当配碳比高于2.6时,残余碳含量会显著增加;随着还原温度升高,前驱体中的碳参与反应并被消耗,W粉颗粒的长大作用被削弱,还原W粉的平均粒径和残碳量随还原温度升高而减小。配碳比为2.6的前驱体经760 oC还原60 min后,得到平均粒径56 nm的球形W粉。2.研究了还原方式对W粉形貌、粒度和显微结构的影响,通过分析不同还原温度W粉的晶粒长大曲线,提出了碳氢协同还原制备纳米W粉的机理。结果表明:W粉晶粒的长大速率随还原温度升高而变慢,760 oC以上时,还原产生的水蒸气与碳反应生成CO和H2,显著降低体系中p[H2O]/p[H2],抑制挥发性水合物WO2(OH)2的产生,W粉的主导长大方式也由挥发-沉积转变为原子扩散。还原方式会对W粉的粒径和形貌产生重要影响,碳氢协同还原W粉的还原长大机制以固相局部化学反应为主,所得W粉为均匀细小的球形颗粒,结构疏松、分散性良好;普通氢还原W粉的还原长大机制以挥发-沉积为主,所得W粉颗粒粗大,发育完全,呈现W本征晶体的多面体形貌。3.以碳氢协同还原纳米W粉和碳黑为原料,采用阶段碳化法制备纳米WC粉,研究了阶段碳化工艺(碳化温度和保温时间)对WC粉物相、形貌和粒径的影响。结果表明:WC粉的粒径取决于W粉的碳化速率和长大速率,高的碳化速率和低的长大速率有利于降低粒径;低温预碳化能够在W粉颗粒表面形成一定厚度的WC层,使颗粒间的接触状态由W/W接触变为WC/WC接触,抑制碳化初期因W粉颗粒烧结合并长大而导致的WC粒径增粗。碳氢协同还原纳米W粉阶段碳化的最佳工艺为:预碳化温度900 oC,保温时间60 min,二段碳化温度1150 oC,保温时间90 min,平均粒径56 nm的W粉经900 oC+1150 oC阶段碳化,得到平均粒径106 nm的WC粉。4.采用连续碳氢协同还原-碳化法制备纳米WC粉,研究了前驱体配碳比对WC粉碳含量的影响,还原、碳化温度对WC粉形貌和粒径的影响。结果表明:WC粉化合碳含量随前驱体配碳比升高而逐渐增加,当前驱体配碳比为3.6时,化合碳含量达到理论值6.12%,游离碳含量为0.06%;当配碳比高于3.6时,游离碳含量迅速升高。还原-碳化过程中由W向WC的转变具有结构遗传性,长大系数在1.41.6之间,WC粉的平均粒径随还原温度升高而降低;升高碳化温度会促进WC粉颗粒的晶界迁移,WC粉的平均粒径随碳化温度升高而增大。碳氢协同还原-碳化制备纳米WC粉的最佳工艺为:前驱体配碳比3.6,还原温度760800 oC,碳化温度11001200 oC;所得WC粉为均匀细小的近球形颗粒,平均粒径87.3 nm。5.以制备的纳米WC粉为原料,采用低压烧结技术制备超细晶WC-Co硬质合金,研究了烧结工艺参数对WC-Co硬质合金显微组织和力学性能的影响。结果表明:随着烧结温度升高和保温时间延长,烧结体的致密度增加,平均晶粒尺寸增大,试样的硬度和抗弯强度也会随致密度上升而提高;若烧结温度过高或保温时间过长,则会使烧结体的晶粒发生异常长大,导致致密度降低,合金力学性能下降。WC-6Co烧结的最佳工艺参数为:烧结温度1360 oC,保温时间60 min,所得硬质合金样品的平均晶粒尺寸为305 nm,为超细晶硬质合金,洛氏硬度达到94.6 HRA,抗弯强度达到4450 MPa。