互联网域间路由大规模不稳定事件测量研究

来源 :清华大学 | 被引量 : 0次 | 上传用户:luhy1123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
测量和检测BGP动态中的异常事件是网络测量的热门话题。此类研究工作对于域间路由故障避免、预测、检测和恢复,网络管理和配置优化,协议设计、评估和改进等方面具有重要作用。绝大部分现有BGP异常测量工作基于所有观测点路由动态数据的聚合,例如总路由更新数量、总被更新IP前缀数量等;忽略了不同观测点数据的差别。然而根据BGP协议的特性,单个观测点处看到的BGP动态可能是高度本地化的。因此基于聚合后的数据来设计方法和算法可能导致对BGP动态的误理解。基于以上分析,本文提出基于观测点区分的域间路由大规模不稳定事件检测方法。研究内容和贡献包括:(1)定量研究BGP动态数据,以及活跃IP前缀的更新在互联网的分布情况。测量发现,BGP动态的分布是高度不均的;反映病态行为的动态更是高度本地化的。此外,相当一部分基于总更新数定义的活跃前缀,其更新分布是高度局部化的。本文提出更新可见性的概念,结合更新数量定义了五类活跃前缀,并分析了各类活跃前缀的数量趋势、相互关系等特征。总的测量结果显示了基于观测点区分测量BGP的重要性。(2)提出大规模BGP事件(LBE)的概念。LBE满足两个条件:在互联网中的较大范围可见,并影响大量前缀。本文提出更新可见性矩阵的概念来描述LBE,并形式化地定义了LBE检测问题。在证明该问题是NP难之后,本文提出了 GDA算法来解决它。然后,该方法被应用于大量BGP更新报文数据。测量结果显示,知名的互联网大规模破坏性事件与检测到的LBE存在较强的相关性。此外,该方法还在2013年10个月的数据中检测到101个未被报告过的LBE。(3)基于BGP更新的类型和内容,以及路由表数据、BGP Community属性语义数据等,提出了一系列的方法——包括主要元素分析,AS路径变化分析,Community属性变化分析等——来分析LBE的成因和对BGP系统的具体影响。本文用这些方法深入分析2013年检测结果中的23个LBE。(4)开发域间路由动态性测量系统,以完成上述测量工作。该系统能够处理TB量级的数据,考虑到了各类异常情况,并且多方面的优化使得该系统适用于内存和计算等资源比较有限的实验环境。
其他文献
有机半导体材料电荷传输的研究受到广泛关注。近期实验上在有机给受体复合物材料,尤其是在光伏材料领域取得了重大突破。然而,对这类材料的理论研究相对滞后,电荷传输机制尚不明确。在给受体复合物材料中,相邻的两个给(受)体中间,夹杂着受(给),称之为“桥”。相邻给(受)体没有直接耦合,而是通过“桥”的分子轨道的辅助,形成超交换耦合。本论文基于第一性原理计算,通过矩阵分块约化的方法来计算超交换耦合,对有机半导
随着高密度读出电子学技术和时间投影室探测器技术的发展,利用单一径迹探测器测量复杂电离径迹(例如低能电子的散射径迹)成为可能。采用径迹探测器获得电离径迹的形态特征和能量特征,发展相应的径迹特征提取方法,是当前粒子探测实验的研究热点之一。然而,由于电离径迹可能发生的大角度偏转和回绕,提取径迹特征是一个难点。本论文针对电离径迹的特征提取开展通用方法研究,结合图论的方法,提出一种反映径迹形态特征和能量特征
基于等离子体尾波的先进加速技术在过去十年取得了巨大进展,有望为激光和加速器的应用带来革命性变化。当前尾波加速研究的关键挑战之一是如何可控地产生远优于现有加速器技术的高品质束流。本论文针对这一问题开展深入研究,在系统梳理注入过程一般性规律的基础上,重点研究了电离注入与等离子体密度调变注入两类方法,提出了能够有效产生超高品质束流的新方案。此类方案能将束流亮度在现有技术基础上提升3-6个量级,一旦在实验
BEGe探测器是一种内部电极极小、具有单载流子响应特性的高纯锗探测器,故它在波形甄别方面更具有优势。BEGe探测器主要用于需要较低本底水平的γ谱分析和无中微子双贝塔衰变探测。对于一套基于良好屏蔽措施及材料筛选的低本底BEGe装置,波形甄别是进一步抑制本底水平的有效手段。在BEGe探测器的主要应用场景中,信号和本底事例多为光子事例。本论文主要对光子事例在低本底BEGe中的物理作用机制和波形表现进行了
细胞内各种生化反应及新陈代谢过程均是在限域环境中进行的。细胞内限域环境包含细胞质中的大分子限域、生物膜结构为膜蛋白等提供的限域环境以及由膜围绕形成的各种细胞器组成的微纳尺寸局部限域环境。限域环境对于维持细胞正常生理功能意义重大,它们调节生物分子的组装和修饰、为生化反应及物质运输提供特异性环境以及精确调控着细胞内物质和能量的传输。体外构建模拟细胞内限域环境的策略主要分为两类,即宏观尺度构建及微纳尺度
空间辐射环境对宇航电子系统构成严峻的可靠性威胁。纳米集成电路具有高性能、高集成度等优点,是未来宇航电子系统的必然选择。辐射效应严重影响纳米集成电路的可靠性,尤其是单粒子效应,限制它广泛用于宇航电子系统。随着集成电路工艺节点的缩小,集成电路晶体管密度提高、工作电压降低、工作频率增加等变化和空间多种辐射效应并存、温度变化范围广等特点导致纳米逻辑电路的单粒子效应研究愈发具有挑战性。本文深入研究纳米体硅C
纳米尺度MOSFET器件的按比例缩小面临着诸多挑战,采用高迁移率材料作为沟道的MOSFET器件或者采用基于隧穿原理工作的TFET器件将有可能是未来推动“摩尔定律”继续发展的技术方案。近年来新型GeSn合金材料由于其独特的能带结构而备受关注。GeSn合金具有高迁移率的特性,同时其可能的直接带隙特性也有利于载流子隧穿能力的提升,可见GeSn有望应用于未来高性能的MOSFET和TFET等场效应器件中,因
基于单机的图处理系统具有较高的性能价格比和潜在的可扩展性,因此具有广阔的应用前景。然而,大规模图处理面临着数据局部性差、访存计算比高、数据高度不规则等问题。由于图数据规模的不断增长,这些问题在单机上基于外存的场景下显得尤为突出。一方面,一些基础的图算法在大规模图数据集上较难做到高效率地实现;另一方面,提供通用接口的图处理系统往往存在I/O效率不高、收敛速度较慢等问题。因此,本文从典型的图遍历算法B
近年来,电阻开关效应(Resistive switching effect)引起了人们的广泛关注。基于电阻开关效应的电阻型随机存储器(Resistive Random Access Memory,RRAM)被认为是未来非易失存储器的有力竞争者之一。它具有存储密度高、读写速度快、制作成本低、功耗低并可与CMOS工艺兼容等一系列优点。对电阻开关效应机制的深入研究,有利于在应用中更好的设计器件及提高性能
材料中的磁电输运现象不仅包含了丰富的物理,而且在信息存储、磁传感器等领域也具有广泛的应用前景,是人们研究的热点课题。本论文中,我们以主流半导体硅为平台,研究了半导体非线性输运性质对磁电输运现象的增强效应,并利用这种增强效应设计了新型磁逻辑器件。本文首先研究了硅基二极管增强磁电阻现象的机理。我们采用二端电阻网络和四端电阻网络建立模型,分别对一维和二维结构的磁电阻器件进行分析。发现了实验中电阻态转变是