论文部分内容阅读
制导律是武器实现精确制导的关键技术。现代战争环境对武器精确打击能力的需求日益趋高。为了提高空空导弹的作战区间和能力,增强空地制导武器的作战效能,强化反舰导弹的突防和协同作战能力,在制导律设计时对大离轴发射情况下拦截机动目标、攻击角度和/或攻击时间控制等方面提出了新的要求。本文在非线性相对运动学的基础上,对一些传统制导律进行了分析和改进,并针对不同的任务需求设计了若干制导律,具体工作如下:引入平面角的概念描述三维相对运动学关系,对三维纯比例导引的零脱靶量特性进行了研究,证明了当导弹朝目标发射且导弹速度大于目标速度时,只要导航增益大于1,就能保证三维纯比例导引对机动目标实施拦截;此外,引入相对航向误差角的动力学方程对三维纯比例导引的捕获域和制导指令进行了分析,得出了导弹大离轴发射时新的捕获域大小和保证指令有界新的充分条件。比例导引在拦截机动目标时存在末端指令发散现象。为解决这一问题,一个有效的方法是在比例导引指令的基础上添加与目标机动有关的项,由此产生了增广比例导引的概念。传统的增广比例导引是真比例导引的增广形式,它的制导指令垂直于弹-目视线,难以直接应用于以气动力为控制力的制导武器系统。因此研究以纯比例导引为基础的偏置比例导引,即增广纯比例导引,对大气层内拦截机动目标的制导应用显得更为重要。然而对增广纯比例导引的制导性能进行分析的文献较少,相关的理论研究也仅限于平面。本文基于三维非线性动力学方程对增广纯比例导引的捕获性能进行了严格的数学分析,推导了三维情形下增广纯比例导引捕获机动目标的充分条件。最优控制是设计制导律时最常用到的一种方法。在采用最优控制设计制导律时,为得到显式制导指令,最常采用的思路是先对运动学方程进行线性化然后利用线性二次型最优控制方法进行设计。这种设计思路适用于制导过程中弹-目相对几何关系始终能保持在碰撞线附近且目标按照特定机动方式运动的情况。这一类制导律大多只考虑了平面制导情况,且假设目标非机动或者静止。因此,这种设计思路得到的最优制导律适用范围较窄。针对这一问题,本文引入相对虚拟坐标系的概念,将普通惯性系下的机动目标拦截制导问题转化为相对虚拟坐标系下的静止目标拦截问题;以弹-目距离为自变量,引入伪控制量将非线性动力学方程化成特殊的微分方程形式;然后采用最优控制方法设计了两种可满足拦截机动目标需要的最优制导律。利用传统双平面分解方法设计带角度约束的三维制导律时,忽略了双平面分解带来的耦合项。为了克服这种设计缺陷,提出了一种新的解耦方法。基于这种解耦方法,在二维带碰撞角约束制导律的基础上,推导出一种新型的三维带碰撞角约束的制导律,并在非线性运动学基础上对该制导律的加速度指令有界性、捕获域大小等进行了严格的理论分析。针对初始发射角和/或期望碰撞角较大情况下的碰撞时间以及碰撞角度同时约束的非线性制导问题,首先分析了本文提出的带角度约束制导律的剩余飞行时间理论解,并基于线性插值方法提出了一种简单、有效且高精度的剩余飞行时间估计方法。基于剩余飞行时间动力学方程,提出了一种有限时间收敛的碰撞时间和碰撞角度同时约束的三维制导律。