(高)超声速光学头罩气动光学效应实验研究

来源 :国防科技大学 | 被引量 : 1次 | 上传用户:hotter_day
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
红外成像制导导弹在大气层中以高速(马赫数大于3)飞行时,光学成像窗口附近严重的气动加热不仅会使目标红外信号被淹没,甚至会导致成像窗口损坏。作为一种常用隔热手段,超声速冷却气膜可以有效隔离外部高温主流对窗口的加热作用。只是,冷却气膜和光学窗口外部主流之间相互作用,形成包含激波、边界层、混合层、冷却剂层及其相互干扰的流场结构,进而对探测器成像质量产生影响,引起目标图像出现偏移、抖动、模糊以及能量消减,这种现象统称为气动光学效应。气动光学效应的存在严重影响了成像制导的精度,已经成为高速红外成像光学头罩研制亟待解决的关键技术之一。超声速湍流边界层作为高速光学头罩绕流中的典型结构之一,已经成为气动光学效应研究的重要内容。基于纳米示踪粒子的平面激光散射(Nano-tracer-based Planar Laser Scattering,NPLS)技术具有高时空分辨率的特点,可以实现高速流动精细结构和时间演化过程的有效捕捉。这种技术特点给气动光学效应研究提供很大的便利。基于NPLS技术获取的超声速(马赫3)湍流边界层流动显示结果,对超声速湍流边界层不同区域气动光学效应贡献特点,不同特征尺度湍流结构以及光线入射角度对超声速湍流边界层气动光学效应的影响及内在机理进行了研究。结论充分反映了超声速湍流边界层中大尺度结构在气动光学效应中的主导作用。并且从通用气动光学联系方程出发,结合空间两点互相关分析方法验证了湍流结构各向异性对于不同光线入射角度下气动光学效应的影响。基于NPLS技术获取的高超声速(马赫6)湍流边界层流动显示结果,结合尺度不变特征变换匹配(Scale Invariant Feature Transformation,SIFT)方法对高超声速湍流边界层速度分布数据进行了提取,并且验证了利用该方法提取速度平均分布和脉动分布的可行性。结合空间两点互相关分析方法,研究了不同雷诺数下高超声速湍流边界层内湍流相干结构的空间分布规律。针对不同雷诺数下光线穿过高超声速湍流边界层后的远场分布特性研究结果表明,随着雷诺数的增加,光束的抖动分量增加并不显著,光束的扩散分量增加比较明显。考虑到折射率场厚度变化的影响,通过引入近场修正和构建双远心光路,提高了基于背景纹影(Background Oriented Schlieren,BOS)波前测试精度。利用标准平凸透镜定量评价了改进效果,验证了近场修正的可行性。研究了基于BOS波前测试技术空间分辨率、灵敏度以及动态测试范围的确定方法。明确了互相关质询窗口尺寸以及相互间隔尺寸对于波前重构精度的影响。不同状态和流向位置下超声速气膜气动光学效应研究结果表明:不同位置处,光程差均方根值(OPDrms)与ρ2/ρSL保持了相对较好的线性关系。在相同实验状态下,气动光学效应沿流向先增大后减小。相关结果验证了大孔径近似(Large Aperture Approximation,LAA)原理在相当大的范围内可以利用OPDrms对斯特列尔比(Strehl Ratio,SR)值进行有效的预测。基于KD-01高超声速炮风洞,我们构建了一个可以获取高超声速(马赫6)光学头罩从短曝光到长曝光下波前结果的气动光学效应测试平台。随着曝光时间的增加,低阶泽尼克(Zernike)多项式重构高阶畸变波前的精度逐渐提高,从62.2%提升至88.6%。这意味着曝光时间的增加有助于降低波前空间分布结构的复杂性,原理上可以降低波前自适应校正的难度。随着曝光时间的增加,高阶畸变波前(OPDhigh-order)对应的OPDrms逐渐增大,增加的幅度逐渐减小。与此同时,不同时刻OPDrms的差异逐渐减小,当曝光时间达到499μs时,这种差异接近于零。在不同曝光时间下,LAA原理都可以对SR值实现比较理想的预测。随着曝光时间的增加,成像积分分辨率呈现较明显的下降,最终稳定在1.43R0左右,相比曝光时间6ns时积分分辨率提升了大约30%。在曝光时间为20μs时,在喷流压比(Pressure Ratio of Jet,PRJ)等于零处,瞄视误差(Bore Sight Error,BSE)比较小。随着PRJ的增加,BSE逐渐增加,并且在PRJ=1处BSE存在局部小值。当PRJ>1时,BSE随着PRJ的增加逐渐增加。微型涡流发生器(Micro Vortex Generators,MVGs)的引入实现了对不同PRJ状态下OPDhigh-order的抑制,并且显著改善了波前的稳定性。
其他文献
随着科技的进步,研究对象微型化成为当今自然科学和工程技术发展的一个重要趋势。微尺度流动和传热有着不同于常规尺度的特殊规律,微流动系统等的发展和应用对微尺度流动和传热规律的研究提出了迫切需求。本文以微推进等微型系统中的流动和传热问题为切入点,以固-液界面相互作用机理及其影响规律为研究重点,采用理论分析、数值模拟及实验研究相结合的方法对其进行了较为系统的研究。论文主要研究内容包括:针对近壁面区液体表观
本文以表面单级微米结构、单级纳米结构和二级结构为研究对象,通过接触角测量仪、高速摄影系统和环境扫描电镜设备等试验手段,结合经典润湿模型、热力学、相变动力学、固体表面吸附等理论分析,详细研究了微纳结构表面的润湿性和润湿稳定性、液滴蒸发过程中的润湿行为和换热特性、静置液滴冻结和融化过程、液滴撞击冷疏水表面现象、以及表面凝露结霜过程。主要包括以下内容:通过试验和理论分析研究了三类微纳结构表面的润湿性和润
脉冲感应推力器,是一种通过脉冲式激励电流的电磁场感应电离和加速气体工质从而产生推力的太空电推进装置。本文综合运用理论分析、数值仿真及实验等研究手段,对脉冲感应推力器的工作机理开展系统研究,重点关注其等离子体结构演化、电路-等离子体双向耦合关系以及各类工作条件对等离子体加速过程的影响。本文建立了一种耦合激励电路与全域磁场的二维瞬态轴对称磁流体动力学模型,在COMSOL平台上实现了对激励电路放电过程、
在漫长的进化历程中,昆虫拥有了敏锐的嗅觉系统,以帮助它们进行觅食、交配、躲避天敌和寻找宿主等。蚊虫就是依靠嗅觉来寻找人类或者其它哺乳动物作为宿主来吸血,以完成交配后的产卵。在吸血的过程中会传播一系列病原体及疾病,比如疟疾、登革热、黄热病毒、西尼罗病毒、丝虫病和寨卡病毒等。本文以中华按蚊和果蝇为样本,重点分析嗅觉相关器官、离子型受体(IR)、嗅觉受体(OR)以及嗅觉信号通路分子机制。中华按蚊作为我国
光纤泵浦/信号合束器是光纤激光器最核心的光纤元器件之一,承担着将一束或者多束泵浦光高效地耦合进双包层信号光纤内包层的重要任务,它的承载功率的大小直接决定着光纤激光器的输出功率水平。采用侧面泵浦技术来制作光纤泵浦/信号合束器的主要优点是,信号光纤不被截断或拉锥,能最大程度地减少信号光的插入损耗并保证良好的信号光光束质量,且扩展性强、易实现泵浦光多点注入。因此,研制能承载高功率的侧面泵浦合束器,对于搭
癌症已经发展成为当前死亡率最高的疾病,其中,侵袭转移是癌症患者死亡的主要原因。越来越多的证据表明,上皮-间质转化(EMT:Epithelial-Mesenchymal Transition)在癌症转移中起着重要作用。RNF8(RING finger protein8)是一种E3连接酶,通过泛素化作用参与DNA损伤修复和精子形成。近期有研究发现RNF8在癌症转移中发挥重要作用,然而此类作用仅在乳腺癌
针对全球气候变化科学问题及其北极自然环境和地缘安全区域响应现实课题,围绕气候变化影响制约北极东北航道开通和航运安全的自然环境与地缘安全因素,从宏观分析与量化评估结合的技术途径,系统深入开展了未来北极海域海冰变化趋势,东北航道在该海冰情景下的通航预期、航行的最优线路、航运的经济潜力以及东北航道开通对传统航道的影响和博弈研究。研究结果表明,气候变化情景下,未来东北航道海域海冰将持续消融,通航时间延长、
复共线性问题是指回归模型中的自变量之间具有高度线性相关关系的一类问题,普遍存在于以非实验数据为主体的自然科学领域中,如:大地测量学、经济学、医学、生物学、大气科学以及武器装备试验鉴定等领域。由于复共线性的存在会导致模型中的回归系数估计失真或难以准确估计,因此,研究发展复共线性情况下的回归模型诊断与度量,以及相应的模型参数估计方法,是实现高精度参数估计和复共线性模型应用的前提与关键。本文的研究内容主
气液同轴离心式喷嘴被广泛应用于低温无毒双组元液体火箭发动机中,但此类喷嘴在特定的结构和工况下容易发生自激振荡现象,而自激振荡有可能会诱发不稳定燃烧。目前对自激振荡特性及产生机理的认识还不透彻,自激振荡对燃烧过程的影响研究更是匮乏。本文借助试验、数值仿真和理论分析手段,以液体中心式气液同轴收口型和敞口型离心式喷嘴为研究对象,对自激振荡过程、产生机理、关键工作/结构参数的影响以及喷雾燃烧动态特性进行了
论文采用实验研究与理论分析的方法,面向液体火箭发动机再生冷却,围绕微小通道内的相变传热过程开展研究。论文发现了微小通道相变传热的三种压力振荡类型,阐明了水相变传热过程中泡状/环状周期性变化的流型与振荡频率之间的内在关系;揭示了液氮在微小通道中亚临界压力下的相变传热机理,提出了基于实验数据的相变传热修正关系式,阐明了液氮低温系统管路中的自维持振荡是一种热力型不稳定流动现象;建立了亚临界相变传热一维计