论文部分内容阅读
石墨类碳材料因具有良好的可逆嵌脱锂性能而在目前的锂离子电池中得以广泛应用。然而该类材料的嵌脱锂容量较低(理论容量372mAh/g),难以满足高能量密度电池的要求,因此开发高性能的负极材料是当务之急。 本论文采用高能球磨法(机械化学过程)制备了一系列锂金属氮化物和金属磷化物,并对其脱嵌锂特性等电化学性能进行了研究,同时对一些Ⅲ-Ⅴ族化合物半导体材料和硒化物半导体材料的脱嵌锂特性进行了初步探讨。 研究发现氮气气氛有利于高能球磨法制备锂金属氮化物材料。在三元锂金属氮化物Li3-xMxN(M=Co,Cu,Ni)中以Li2.6Co0.4N有着最高的容量,前10次循环可逆脱嵌锂容量高达880mAh/g。用Cu、Fe部分取代Co的Li2.6Co0.2Cu0.2N和Li2.6Co(0.2)Fe0.2N材料脱嵌锂容量有所降低,然而在循环性能方面有了较大的改善。而将Co完全取代的Li2.6Ni0.2CH0.2N材料的电化学性能相对较差。此类氮化物材料首次脱锂时从晶态转变为无定形态,随后的嵌脱锂过程保持该无定形态。这种无定形态允许大量锂离子的脱嵌,但是在最初的几个循环会发生结构重排。材料的电化学活性与其本身的微结构(比如脱锂后的结构排序等)密切相关。 CuP2材料首次嵌锂过程对应于Cu的还原和Li3P的产生,随后的脱锂过程呈现三步反应,对应于Li2CuP等新相的形成。其脱嵌锂机理与CoP3和MnP4不同,其中Cu和P在氧化还原过程中都起着重要作用。而加入Li3N为反应物制备的三元磷化物Li1.75Cu1.25P2材料有效地消除了CuP2材料的首次不可逆容量,首次脱嵌锂容量750mAh/g左右,充放电效率为100%,其脱嵌锂机理与CuP2类似。 GaAs、GaSb、InP和InAs的脱嵌锂特性比较相似,充放电过程可能对应于合金化与去合金化过程。而SnSe和PbSe的脱嵌锂恃性与各自的氧化物类似。