持续在线的电力巡检无人机的研究与设计

来源 :太原科技大学 | 被引量 : 0次 | 上传用户:sccdxlxsq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着我国特高压电网投运的规模日益增大,人工巡检输电线路的方式已经无法适应我国电网发展的实际需求。目前,大部分地区输电线路巡检采用传统的人工巡检方式,该方式存在成本高、安全系数低及故障反馈时效性差等问题。另外,少部分地区采用无人机航拍巡检,该方式有效地弥补了人工巡检存在的一些缺陷和不足,但是就目前而言,无人机在远距离巡检方面还存在一些不足:一方面是电池续航问题;另一方面是与地面站通信距离问题,导致远距离巡检需要更换起飞地点并重新安装调试设备。因此,亟需提出一种合理高效的输电线路巡检方案。本课题设计并搭建了一种持续在线的电力巡检无人机,一定程度上实现了无人机自主起飞、自主降落及自主飞往无人机机库充电的功能,从而满足无人机的持续巡检,其主要研究工作如下:(1)根据实际需求搭建无人机硬件平台,并对无人机动力系统进行数学建模,进而对无人机挂载能力、续航时间和最大俯仰角进行性能估算,使其获得最优系统配置方案。(2)根据解析地面站通讯协议,使自行开发的飞行器控制系统与地面站进行信息交互,便于检测传感器、GPS、实时电压的数据。另外,利用地面站进行航线规划,使无人机通过路径跟随算法进行自主巡航。(3)针对高压输电线路电磁辐射干扰GPS定位的问题,本课题采用光学辅助系统实现无人机自主降落。在自主降落算法方面:一方面针对Hough变换法在检测过程中需要遍历图像边缘点的问题,采用图像预处理的方法,使参与Hough变换的无效像素点减少;另一方面针对Hough变换法在检测过程中无法实时调节参数r的问题进行了优化,并利用Visual Studio 2017进行仿真,进而验证算法的可行性。(4)针对无人机远距离巡检导致电池续航不足的问题,本课题设计了一种无人机机库装置,其包括控制器、校正装置和停机坪升降装置等。另外,针对无人机巡检过程中偶遇的突发性故障而导致无人机丢失的问题,本课题采用SIM800C模块将失控时的位置通过短信透传的方式发送至预留手机号中。
其他文献
随着新能源发电渗透率的提高,电网中元素日益复杂,逐渐出现大规模储能以及充电桩、电动汽车等电力设备。从经济效益和社会效益看,分布式发电都具备较好的效果,但是与单机接入模式相比,在成本方面相对较高,同时系统控制难度较高,需要进行大范围的技术调整和配置,并且对发电技术产生影响。分析DG控制模式,通过深度研究微网在多个运作模式下的控制方式,发现其存在难以实现无功功率分配的精度等问题,因此,本文选择通过多个
随着电力系统中的谐波污染日趋严重化,引起了一股国内外研究和治理谐波的热潮。为了对电网谐波进行选择性补偿,本文侧重于对以下两部分内容的研究:第一,对谐波检测的研究。本文提出了一种基于对偶观测器理论的新型谐波电流检测方法,达到了对特定次谐波检测实时性和准确性的要求,并为传统的谐波检测方法提供了一种新思路;第二,对谐波电流跟踪控制的研究。本文针对谐波电流跟踪控制设计了一种基于多重PR控制的空间电压矢量变
井下矿工工作后,为了除去井下工人衣服上的煤尘,尽量减少煤尘被携带至井上的行人通道及工人生活区域,同时也应避免煤尘进入空气污染环境,因此设计了负压除尘集尘装置,其中除尘系统和集尘系统是重要的两个组成部分,它们的结构会影响装置的工作效果。本文以实体建模为基础,运用计算流体力学软件,并考虑实际情况建立吸尘口、集尘箱以及管道系统的结构模型,导入ICEM中划分网格,然后运用Fluent单相、离散相模型,采用
随着国民经济的飞速发展,为了确保配电系统安全平稳运行,实现电力系统自动化、智能化的发展,对电力物联网的研究显得至关重要。低压断路器作为配电系统各种保护设备中重要的一员,有着举足轻重的地位。同时,在智能电网以及泛在电力物联网的建设过程中,为了顺应电力市场智能服务化趋势,满足用户对智能设备的需求,断路器的智能化研究也显得尤为重要。经过对国内外智能低压设备的研究,本文提出了智能低压断路器设计及运行服务平
随着化石能源的消耗,风能和光能等可再生能源以及电动汽车等新型负载正在迅速发展。为适应各种新型源荷(风、光等可再生能源及电动车等新型负荷)的发展,全球各国针对性提出能源互联网的概念,而能量路由器作为能源互联网的基础设备,肩负着不同形式、等级电压转换以及能量管理的重要任务。因此,多端口能量路由器的研究、分析和设计具有重要的现实意义和应用价值。论文基于五端口能量路由器拓扑结构进行分析,研究了各端口控制策
脑的电生理活动信号的采集区域一般位于大脑颅腔内或大脑头皮,采集精度差、信号识别率低是脑机接口(BCI)研究面临的主要挑战。目前BCI的信号采集主要分为侵入式和非侵入式,但侵入式BCI手术风险大,且在术后容易引起免疫反应和愈伤组织。非侵入式BCI因其采用头皮脑电信号(EEG),具有无创性、良好的时间分辨率、便携性和成本较低等特点,已成为BCI技术的研究热点。在非侵入式BCI中,运动想象BCI需要对被
工业数字化时代下为了打通设计与生产间的数据流并缩短设计生产周期,实现整个电气设计过程的规范化和流程化,以集成整合和自动化为主要特征的智能设计技术已逐渐成为电气设计主流。本次针对以往CAD面向符号的设计方式,以φ50mm穿孔机控制系统为例给出了一套面向部件的智能设计方法,本文主要工作如下:首先本文对传统和ESIA原则优化后的控制系统设计流程进行了对比介绍并从原理图设计与3D布局两方面阐述了优化后设计
大规模MIMO是提升5G频谱效率的关键技术之一。然而大规模MIMO系统天线数的增加,使得传统信号检测器难以在良好的性能与复杂度之间取得平衡。深度学习的深层网络结构使其具备强大的数据学习能力。对此,本论文研究了深度学习技术在大规模MIMO信号检测中的应用,具体的研究工作及创新点如下:第一,改进了Det Net检测网络的结构以提升检测性能。首先,深入分析了Det Net的检测原理,采取去除冗余输入项的
公共安全是国家和社会稳定的基石。近年来,随着城市人口的迅速增长,因密集人群相互拥挤所诱发的拥堵踩踏事故时有发生,不仅给社会带来巨额经济损失,而且对人们的生命造成严重威胁。因此在突发事件时,如何确保大量聚集人群迅速、有序、安全疏散是亟需解决的重大问题。本文在现有行人流元胞自动机模型的基础上,针对环境中存在吸引源情况,考虑吸引源的数量、行人结伴行为以及环境中出口设置不同等因素,分别建立了相应的基于移动
滚动轴承是旋转机械的重要部件,由于机械部件集成度高,轴承故障监测系统的采样点和采样周期不断增加,处理大量数据的能力已经成为现代故障诊断方法的必要要求。传统的机器学习故障诊断模型为浅层网络结构,若模型输入特征表示不足,可能会导致误诊断。滚动轴承在高维数据下存在特征选取困难导致分类结果不准确问题,深度学习虽然能够自动从原始数据中学习基本特征,但标准的深度学习的方法只考虑了单一的深层次特征,忽略了浅层特