论文部分内容阅读
通过热化学转化制取生物油,是当前生物质高端利用的研究热点之一。但初级生物油存在氧含量高、热值低、稳定性差、腐蚀性强等缺点,不足以达到直接替代石油制品的要求;通过精炼、提质使其转变成合格的燃料油,又将导致成本升高、能量转换利用效率降低等新的问题。本文依托国家自然科学基金项目《CaO化学链置换用于生物质热裂解制油脱氧的基础研究》,在生物质能利用技术及热裂解机理研究综述的基础上,详细分析了生物质热裂解制油在线脱氧的可能途径,并提出了双循环流化床CaO脱氧/再生的工艺设想。进而,围绕这一创新思想的基本要求,进行了较系统的CaO伴随生物质热裂解实验研究与机理分析,为进一步的新工艺开发打下基础。本文的主要研究方法及成果如下:(1)采用热天平装置,对CaO伴随红松及稻秆的热裂解特性进行了研究。实验结果表明:CaO有可能直接固定了生物质热解中产生的“类CO2活性中间体”;以CaO最终生成CaCO3的转化率而言,CaO与生物质的质量比率存在一个最佳范围;红松比稻秆更适于用作热解制油原料。(2)采用小型管式沉降炉热裂解装置,进行了CaO伴随纤维素快速热裂解制油中CaO在线脱氧的模拟实验。相对于纯纤维素热解油有机组分初始氧含量44.4wt%,CaO/纤维素质量比为2时的氧含量降为40.7wt%,相对值下降了8.4%。随着CaO的加入,羧基、羰基或相似分子碎片等“类CO2活性中间体”直接被固定生成各种有机钙盐(比如羧酸钙盐),从而形成了有利纤维素单体分裂重整路径进行的“化学汇”,使竞争反应更多地朝着开环、重整、分裂反应的路径进行。此外,CaO的加入也催化了脱水反应的进行。(3)在小型流化床反应器中,对CaO伴随白松快速热裂解制油的脱氧效果进行了研究。相对于纯白松粉热解所得生物油有机组分初始氧含量39wt%,CaO/白松质量比为5时的氧含量降为31wt%,相对值下降了21%。结果进一步证实了CaO伴随生物质热裂解过程中生成物为糖醛酸钙等有机钙盐的“类CO2活性中间体”固氧路径的存在。同时, CaO可以促使木质素成分的热解反应更偏向于侧链整体断裂的路径及催化脱水反应的进行。(4)对纯白松及CaO伴随白松热天平热解固体产物样品进行了XRD、FTIR和XPS分析。实验结果表明:有机钙盐于300℃~350℃时已大量出现,并于400℃前已显著分解。