论文部分内容阅读
在工程活动中,隐含着大量的复杂矛盾问题。目前,复杂矛盾问题的解决仍滞留在个体经验和人工操作的阶段。通过计算机对工程复杂矛盾实施科学高效的智能化处理,是工程上的急需。工程复杂矛盾智能化处理的研究,不仅可为工程领域复杂矛盾问题的科学高效解决提供基础理论和方法,也将为这些领域矛盾问题智能处理软件的研制奠定基础,从而推动国民经济中各个行业信息化的高速发展。本文围绕工程复杂矛盾的智能化处理,进行了以下几方面的研究:1.复杂矛盾问题的分析在建设、环境、控制、检测等工程领域存在着大量的复杂矛盾问题。面对复杂矛盾问题,人们常常感觉不知所措、无从下手。为此,本文引入了粒计算理论对工程复杂矛盾问题进行分析,建立了复杂矛盾问题的粒度分析模型——ECC-QSCM模型,并给出了基于该模型的具体的粒化方法及步骤。该模型为复杂矛盾问题的分析提供了理论依据。2.主要矛盾的识别解决主要矛盾是解决工程复杂矛盾问题的关键。由于工程复杂矛盾问题中的矛盾问题之间存在相关关系,一个矛盾的化解会影响到和其相关的矛盾。所以,简单的单纯使用矛盾度作为依据来判定是否为主要矛盾还不够科学。因此,本文从工程实际出发探讨了工程复杂矛盾问题中主要矛盾的识别原理和方法,并分别针对独立矛盾问题集和相关矛盾问题集,给出了相关的识别定理及识别流程和算法。3.矛盾的转化对矛盾问题进行转化,就是要对其矛盾体中矛方及其相关物元进行恰当地变换,也就是求取相应的转化函数。对不相容问题转化函数求取过程中变换元素的选择,变换操作的选择进行了研究,建立了相应的变换原则,并定义了有关矛盾体变换的21种类型,共49种新的变换操作,使其更具实用参考性。另外,还对对立问题转化函数的求取进行了研究,明确了对立问题转化桥的构建原则,提出了构建分隔式转折部的四种分离原理,给出了其形式化表示方法及其具体的应用实例,为实际应用中对立问题的智能化处理提供了方法指导。4.传导矛盾的处理解决复杂矛盾问题既要考虑单个问题的处理,也要考虑问题之间的联系,还要考虑原问题处理后可能产生的传导矛盾。针对工程复杂矛盾问题中可能出现的传导矛盾进行了研究,分析了传导矛盾的成因并给出了相应的解决方法,这将为工程实践中传导矛盾的分析和处理提供参考。论文最后进行了总结,说明了研究的创新点及主要研究成果,指出了需要进一步研究的问题。