论文部分内容阅读
先进的惯性技术水平是衡量一个国家军事实力的重要标志,可以说没有先进的惯性技术就没有先进的军事装备。惯性导航系统具有完全自主、不受干扰、实时输出载体姿态、位置、速度等各种导航信息的优点,因此在军民用领域得到各国高度重视和广泛应用。进入二十一世纪后,国外激光陀螺捷联惯性导航系统(Ring Laser Gyro Inertial Navigation System,LINS)已进入产品工程化阶段。而在国内,LINS与国际水平还存在一定差距,在一些领域还处于工程化研制应用的初期,我国已通过引进生产线等解决了激光陀螺的生产问题,但如何从器件级(激光陀螺,加速度计等)到系统级,如何解决LINS工程应用中所面临的恶劣环境条件的影响,提高其应用精度,推进其在我国的工程化应用进程,具有重要的学术价值和现实意义。论文的研究与试验正是基于航天预研项目(编号为:618020704),以及与此相关的LINS的工程应用要求进行的。论文依据项目技术指标要求,设计了系统总体方案,在完成LINS样机基础上,主要围绕如何解决其在高动态、不同温度条件下的工程应用精度问题,通过理论研究和大量工程试验,对该系统中若干关键技术进行了深入研究,并对各项研究成果逐项进行了试验验证,精度指标满足背景要求。论文主要研究内容如下:①依据预研项目提出的指标,设计了系统总体方案。首先从系统的角度对技术指标进行了论证、计算并完成系统总体方案的设计,提出了设计实现的技术难点与关键点,并完成了工程样机,为关键技术的研究提供了硬件基础和研究方向。②高频采样与圆锥误差补偿研究。从理论上分析了圆锥误差的产生机理、并重点研究了转动矢量的姿态算法和三子样算法;分析了激光陀螺输出信号的特性及对系统误差的影响,指出了要解决高动态问题,首先必须从根本上解决由于整周期采样导致的信号不同步、采样频率低引入的误差,研究了LMS算法自适应滤波器,设计了硬件高频读出电路和滤波补偿软件,在此基础上进行圆锥误差补偿,基座摇摆条件下获得满意的静、动态精度。③LINS的动态特性与减振研究研究了LINS在高动态振动条件下的误差,研究表明系统重心配置、刚度设计、减振器的选取是影响系统高动态条件下应用精度的关键,提出了通过陀螺输出判断重心偏移的方法,并通过重新设计和微调大大改善了其动态性能。最后通过实验检验,其在振动条件下定位精度达到120米(6分钟,10.8g),各种路面跑车试验定位精度小于1.5海里/小时(CEP)。④系统温度补偿针对指标快速反应的要求,研究了系统对温度的敏感特性及由其导致的漂移误差,着重研究了系统的温度补偿模型、拟合方法,同时设计了多个温度感测点,将陀螺和加速度计的转换过程看作为一个“黑匣子”,做整体补偿;并利用神经网络强大的非线性映射能力对输出参数进行拟合,使不同温度下初始对准姿态精度达到8"以内,并将准备与对准时间由原来的15分钟提高到2分钟,并从理论和试验中指出了温度点的选取是实现有效温度补偿的关键之一。设计的实现提高了系统快速反应能力和机动能力。⑤标定与试验考核样机经过标定与测试,指标满足预研研制目标;于2006年9月~12月,分别参加了在河北廊坊地区、北京云岗地区的跑车试验,指标达到:3小时航向精度高于9′(1σ),水平定位误差小于0.15D%(CEP),航向保持精度名列前茅。