基于陶瓷介质填充谐振腔的双工器设计方法研究

来源 :南京理工大学 | 被引量 : 0次 | 上传用户:yuanhongsheng1982
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着现代通信技术的飞速发展,通讯设备的集成度也在日渐提高。通信射频前端系统对微波器件的高性能、小型化、一体化设计提出了更高的要求。在此背景下,对通信系统中的关键器件微波双工器开展高性能、小型化研究具有重要的意义。传统形式的金属腔体双工器因其较大的电路体积通常制约了射频系统的高度集成,迫切需要实现双工器的高性能、小型化设计;近年来,得益于材料研制技术的不断提高,陶瓷介质材料具备了较高的品质因数、极低的温度漂移系数以及多种可选的相对介电常数等优点,因此,基于陶瓷介质材料设计高性能、小型化的微波器件正受到国内外学者越来越多的关注。鉴于此,本文基于陶瓷介质填充谐振腔开展了高性能、小型化双工器的研究,通过采用共腔型的公共端口以及矩形陶瓷介质表面金属化的谐振腔处理方式,结合双工器综合理论,设计并实现了三款不同形式的双工器,本文具体研究内容如下:1.首先分析了双工器的研究背景及国内外研究现状,明确本文的工作意义。介绍了双工器的基本原理和相关的基本理论,包括双工器的基本原理和指标参数,微波网络理论,滤波器的传输函数以及滤波器和双工器的基本综合理论,为本文的研究工作奠定基础。2.其次,提出了一种基于陶瓷介质填充谐振腔的层叠型双工器设计。采用共腔型的公共端口处理方式和上下两层的谐振腔分布方式,结合耦合拓扑和技术指标要求,综合得到双工器的耦合矩阵,并建立ADS等效电路对耦合矩阵进行了验证。之后分析了谐振腔的模式特点和耦合方式,采用HFSS本征模对双工器的谐振腔和耦合窗的初始尺寸进行仿真,结合双工器的群时延响应特性,使用协同仿真的方法对双工器的全腔进行优化调试,所得双工器结构紧凑,性能优良,并实现了小型化设计。3.最后,提出了一种基于陶瓷介质填充谐振腔的折叠型双工器设计。采用共腔的公共端口处理方式和折叠型的单层谐振腔分布方式,结合更高的设计指标要求,完成了通带选择性能更加优良,结构更加简洁一体化的双工器设计,并进行了加工测试。之后介绍了双工器的交叉耦合理论,根据折叠型物理结构特点,引入了CQ型的交叉耦合结构,完成了双工器的优化设计,实现了更优的带外抑制特性和更高的通带隔离度。
其他文献
现代无线通信技术飞速进步,无论是信息的传输速率还是工作带宽,都在向着更快更宽的方向发展。而为了契合高信息容量的传输,调制方式愈来愈复杂,导致信号峰均比过高以及可利用频带短缺。综上,现代无线通信需要新型的发射机结构,而功率放大器在发射机中,起到决定性的作用,将影响整个发射系统的性能。对于功率放大器,它的带宽、效率和线性度又是相互影响、相互限制的指标。那么,基于宽带功率放大器,均衡线性度、效率等指标是
红外偏振探测作为新型探测手段,能够比传统红外探测提供更多目标信息。本文从目标的传热特性和偏振特性出发,考虑材料表面微元面起伏阴影遮效果等因素,建立了复杂目标表面红外偏振计算模型。利用该模型计算不同入射条件下复杂目标表面的偏振分布,分析模型中各种参数对偏振度的影响;在此基础上考虑大气散射对目标表面红外偏振的影响,计算并讨论了大气背景下目标表面的红外偏振分布。研究结果表明:目标表面温度通过影响自身红外
本文以LTE信号为外辐射源信号开展地面无源探测系统用于探测低慢小目标的关键技术研究,主要围绕无源探测单目标、多目标检测、直达波与多径杂波干扰抑制方法和无源定位方法三个方面开展深入的分析和研究。主要研究内容概括如下:(1)分析了LTE信号特性和模糊函数,说明LTE信号相较其它常用外辐射源信号的优势所在;建立了基于LTE的地面无源探测模型,根据探测模型计算相关参数,对最大可探测距离进行了分析;利用FE
“低小慢”目标具有雷达散射截面积小、多普勒特征不明显以及低空活动的特点,为了实现对其正常的检测与跟踪,需降低相应的门限,同时大量的环境杂波与干扰目标也会进入雷达数据处理系统,使得需要计算的数据量大幅增加,因此对雷达数据处理系统的实时性、稳定性提出了更高的要求。本文研究了基于脉冲多普勒体系“低小慢”雷达的雷达数据处理算法,提出了一种流水线式实时数据处理的方案用于雷达数据处理模块,并基于Python编
空间调制(Spatial modulation,SM)是一种具有绿色性、低成本和高能效的现代通信技术。SM通过配备极少的射频链数来实现通信,是空时码和贝尔实验室分层空时之外的第三种方法。SM除了发送传统的调制符号外,还充分利用了天线索引来提升通信速率和传输可靠性。SM可以降低硬件成本,提高系统的能效性。然而,由于无线通信的广播特性,合法接收机在通信时,易于遭受到非法用户的攻击或者窃听。因此,如何实
天线阵列技术是实现能量波束聚焦和空间扫描的技术手段,在雷达和通信系统中有着广泛的应用。基于相控阵(PA)的波束形成导向矢量是与角度有关的函数。近几年发展起来的频控阵(FDA)通过在发射阵元信号间设置远小于载频的线性频率偏移量,使其波束含相控阵波束中没有的距离信息且能实现自动扫描,但由于存在距离角度耦合以及周期性问题,影响了距离与角度信息的求解。本文在研究了阵列发射接收信号原理以及阵列波束形成技术的
主动式毫米波成像安检雷达作为目前最具发展潜力的人体安检技术,具有非常广阔的应用前景。采用宽带信号作为安检雷达的发射信号,可以有效提高其成像精度。此外,回波信号的采集精度以及数据传输存储过程的准确性对成像效果也至关重要。本文以电科某所的新型毫米波安检雷达为项目背景,设计并实现了其中频信号产生、采集与传输系统。论文主要工作和贡献如下:系统方案设计与信号产生算法推导仿真。本文首先基于安检雷达信号产生、采
采用数字波束形成技术的数字阵列天线,可以同时形成多个方向图特性独立控制的数字波束,并具备空域自适应干扰抑制和高精度角度估计等能力,因此已经得到较为广泛的应用。现有的数字波束形成系统主要是窄带系统。随着实际应用对雷达距离分辨率要求的不断提高,信号带宽不断增大,宽带数字波束形成系统是未来数字阵列雷达的发展趋势。本文以某48通道子阵宽带数字阵列雷达系统研制为背景,从模块化、标准化和可扩展性出发,提出了一
光学玻璃作为大功率激光光学系统的核心组成部分,极易在大功率激光辐照下产生不均匀的应力,影响光束质量。本论文针对大功率激光致玻璃的热力效应,建立了玻璃应力的在线实时快速测量系统,对于解决因玻璃应力所导致的光束质量变差等问题,具有重要应用价值。本研究首先建立了大功率连续激光辐照下光学玻璃应力的物理模型,利用有限元软件COMSOL建立了激光辐照玻璃的二维轴对称模型,通过仿真分析得到了玻璃的温度分布和应力
目前随着半导体技术的发展,各种封装技术不断涌现。系统级封装技术(SiP)凭借高集成的特点以及在与其他工艺结合时的便利性在一众封装技术中脱颖而出,在实现设备的多功能化以及小型化方面有很大建树。与传统的2D封装相比,3D的系统级封装技术提高了互连密度,拥有更好的信号传输性能以及芯片工作性能。针对如何将3D系统级封装技术应用于射频收发前端的问题,本文对相关技术进行了研究。文中首先对收发机的结构做了探讨研