论文部分内容阅读
高压输电线路智能巡检机器人是随着输电工程技术发展的需要而产生的。此类机器人系统可以在输电线路上实现监控状态下的自主行走与视觉监视,跨越塔杆等作业,大大减轻了输电维护人员的劳动强度和难度,提高了巡检的效率和质量,对于输电系统得安全可靠运行具有重要意义。而随着数字图像处理和人工智能两门技术的不断发展,使得高压输电线路的智能检测成为可能。本论文的课题来源为国家863基金项目,课题名称为“高压输电线路带电作业机器人智能控制器”。此课题主要围绕高压输电机器人检测开展研究工作,而本文所研究的就是其中一部分,对高压输电线路中绝缘子裂纹的检测和分类识别。本文研究的重点是利用图像识别的方法,通过模拟机器人的视觉系统,检测高压输电线路中绝缘子的裂纹及完成裂纹的分类识别。先通过硬件设备,采集到目标的图像信息,传输给计算机,再由软件完成图像的预处理、图像分割、特征提取和分类识别等一系列工作。文中,图像经过预处理之后,在图像的分割中,提出了一种根据像素划分子块图像的方法,能够在二值化的同时较好的排除非裂纹目标;在特征提取中,基于二值化得到的模式矩阵计算绝缘子裂纹图象的不变矩,以此作为下文神经网络的输入向量;最后,设计基于BP神经网络的神经网络分类器,将特征向量输入神经网络进行模式识别和分类,完成对裂纹三种状态:单裂纹、网状裂纹和块状裂纹的识别。