论文部分内容阅读
煤炭井工开采中,最核心设备是工作面的支架、运输机和采煤机。采煤机是较复杂的、属于技术含量较高的核心机电设备。为了煤炭生产的安全、高产和高效,目前已经实现了支架运输机的联动自动化,而采煤机还没有实现联动和自动驾驶。采煤机自动驾驶中已实现了行走自动化,目前最需要解决的是滚筒调高自动化。本文就该课题展开了研究。关于采煤机自动调高的研究,国内外自上世纪七十年代就开始了,主要集中在煤岩分界方法和传感器研发制造方面,而随着电子通信技术的发展,采煤机的主控系统平台也在升级换代,因此出现了在高性能微机控制平台上实现的记忆截割等技术,实际上类似于现代机器人原理。国内采煤机目前也实现了主控系统的升级换代,尤其以我公司的基于DSP技术的主控系统平台为典型。本课题围绕国外记忆截割原理,加以消化改进,在该平台上以模块化的方式进行实现的。本文在模型建立和系统实现中也引入了一些新方法,具体研究如以下几方面所述:首先整理综述了采煤机滚筒自动调高的历史研究状况,分别介绍了各类方法的优缺点,针对技术的发展,提出了新的解题思路。其次选择现代通用总体布置的采煤机,对其滚筒调高方式进行数学建模。然后针对实际工况的各种干扰情况进行改进,确定了较符合实际的调高数学模型,同时为各类研究方法提供了一个理论依据。第三,根据采煤机姿态控制的需要,梳理了矿用传感器的选择原则。通过方案对比,选择采用了倾角和位置等传感器,通过样机试用取得良好效果。此外针对部分传感器还进行了零点修正和温度补偿,从而建立了采煤机的姿态检测系统。第四,提出按照预测控制MAC模型进行调高控制,详细阐述了控制策略设计要点,并引入了灰色预测模型对预测反馈通道进行建模。根据需要,采用改进的灰色预测模型进行采高预测。该模型除了引入工作面采高信息,还特别引入了已成巷道的煤层高度信息进行运算,通过对比运算,以调整次数较少而优于国外的记忆切割法。最后结合采煤机DSP主控系统的开发,引入同类型DSP芯片进行调高模块功能实现设计。文中详细分析了DSP芯片的功能特点、各类接口、设计及PCB制作要点。此外对系统方面、预测模型算法等进行软件设计并单机调试。通过硬件设计和软件调试,完成了主控系统中调高模块的设计、制作和实验室验证。本课题研究表明,结合现代DSP开发技术和预测控制理论的应用,采煤机滚筒自动调高技术可望取得跨越式进步,能够在复杂的采煤工作面得以实现。