介观尺度H62黄铜薄板尺寸效应研究

来源 :东北大学 | 被引量 : 0次 | 上传用户:brxdq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
微塑性成形中,材料的力学性能和变形行为表现出与宏观尺度下完全不同甚至相反的尺寸效应。研究材料的尺寸效应对微型件的制造和微型工具的开发具有重要的理论意义和实际参考价值。本文以厚度为50 μm~300 μm的H62黄铜薄板为实验材料,通过退火实验、拉伸实验和弯曲实验对介观尺度H62黄铜薄板的尺寸效应展开研究,分析其力学性能和变形行为的尺寸效应规律。主要研究内容和结果如下:(1)制定了 H62黄铜薄板保护气氛退火工艺,通过退火消除轧制变形量对于原料的组织与力学性能的影响,制备出研究尺寸效应的实验材料。研究了退火过程中的组织演变,介观尺度H62黄铜薄板的晶粒尺寸随退火温度增大而变大的规律与宏观尺度类似。相同退火温度下,晶粒尺寸随着试样厚度的增大而增大。轧制态试样的显微硬度随着试样厚度的减小先增大后减小,电导率随着试样厚度的增大而降低。随着退火温度的升高,材料的显微硬度逐渐降低,电导率表现出上升趋势。(2)通过微拉伸实验研究了 H62黄铜薄板的力学性能尺寸效应。分别采用Hall-Petch模型、表面层模型、应变梯度塑性理论和断裂理论对H62黄铜微拉伸实验中力学性能的尺寸效应进行分析。实验结果表明,保持退火温度相同,随着试样厚度的减小,屈服强度和抗拉强度在80 μm~300 μm厚度范围内表现出“越小越弱”的第一类尺寸效应,在50 μm~80 μm厚度范围内表现出“越小越强”的第二类尺寸效应。H62黄铜的延伸率随着试样厚度的增加而逐渐升高,断口逐渐从单一滑移分离型变为韧窝聚合与滑移分离混合型。(3)研制了 U形微弯曲模具,通过微弯曲实验研究弯曲成形的弯曲力尺寸效应和回弹尺寸效应。实验结果表明,最大弯曲力下降速度大于试样截面积下降速度,表现出明显的尺寸效应。弯曲力随着压下速率的增加而略有增大;随着退火温度升高,弯曲力逐渐降低,润滑条件得到改善时,弯曲力有所降低。对于厚度相同的试样,回弹角随着退火温度的升高而减小;保持退火温度不变,回弹角随着厚度的增大而减小,随着退火温度的升高,回弹角减小的速度越来越小,厚度越小的试样回弹角减小的幅度越大。弯曲成形后试样变形区表面粗糙度升高,表面质量变差。(4)引入试样厚度与晶粒尺寸之比t/d作为尺寸因子。总结介观尺度H62黄铜薄板的屈服强度、抗拉强度和延伸率及弯曲回弹角随t/d的变化规律。分析表明,屈服强度和抗拉强度随着t/d的增大而增大,且试样厚度越小,增大的速度越快。延伸率随着t/d的增大先增大后减小,厚度越小的试样变化越显著,表现出明显的尺寸效应现象。回弹角随着t/d的增大而增大,试样的厚度越薄,回弹角增大的速度越快。
其他文献
高铬铸铁材料具有优异的耐磨性和较低的生产成本,被广泛应用于煤矿、国防、冶金和建筑等重要工业领域,但其在冲击较大的工况下耐磨性仍有所不足。近年来,许多国内外学者在高锰、高铬铸铁材料研究的基础上添加W、Mo、V等合金元素,开发出多种高合金耐磨材料。合金元素中,Cr、W、Mo、V等元素为碳化物形成元素,在凝固过程中与C元素作用形成高硬度碳化物,能够有效的提高材料表面的宏观硬度,但这些碳化物同时会割裂基体
镍基单晶高温合金是航空发动机四大热端部件首选的高温材料。随着航空飞机的不断发展,对航空发动机涡轮叶片提出了更高的性能要求。涡轮叶片是航空发动机的四大热端部件之一,对其性能也有着极高的要求,涡轮叶片的主受力方向沿着其[001]取向,但是涡轮叶片在服役过程中受力复杂,不仅受离心力的作用,还要受热应力和循环应力的作用,导致涡轮叶片局部受到的各个方向的应力。另外,在涡轮叶片服役过程中,其晶格发生转动,导致
机械式挖掘机具有剥离力强、工作效率高和施工灵活等优点,因此在露天矿山开采中被广泛的使用。随着中国经济的发展,我国矿石的需求量快速增长。面对矿藏挖掘高效率、低成本的要求,机械式挖掘机需要不断的更新和改进。本文以抚矿集团FWK-4A机械式挖掘机的工作装置为研究对象,对工作装置进行设计和优化,由原来的4.6m3机械式挖掘机改进为5.6m3机械式挖掘机。本文主要研究内容为:(1)首先对机械式挖掘机在挖掘过
热轧无缝钢管广泛应用于船舶制造、油气运输等行业领域,被誉为工业的血管。由于其特殊的高温下穿孔轧制的特点,使得最终得到的组织较为粗大,无法有效提高无缝钢管的力学性能。目前国内外大部分的研究集中于通过热模拟试验来实现钢管的在线热处理以及控制冷却技术的开发,而这两种方法都有其局限性,难以模拟无缝钢管中的切变变形和冷速。因此本研究提出了氧化物冶金+微合金元素添加的方法,拟通过添加高温稳定存在的第二相和微合
齿轮传动系统在工业中被广泛应用于功率传递、转速变换等场合。在真实工作情况下,齿轮的齿廓表面往往会偏离理论齿廓面,从而形成齿廓偏差。齿廓偏差主要来源于轮齿修形(齿廓修形和齿向修形等)、齿面损伤(点蚀、剥落、磨损和胶合等)、制造误差和装配误差(平行不对中和角不对中)等。齿廓偏差会改变齿轮副的接触状态,造成啮合特性的变化,而啮合特性的变化又会进一步地影响齿轮系统的动力学特性。考虑齿廓偏差的影响,本文旨在
实际工程结构中不可避免的会存在或产生疲劳裂纹,疲劳断裂是机械构件失效的重要原因,给人类的生命和财产安全带来了极大威胁。2024铝合金在众多领域有着广泛的应用,尤其是航天领域中不可或缺的材料。基于疲劳裂纹对机械构件寿命的重要影响以及2024铝合金广泛的应用,深入研究含初始裂纹的2024铝合金在滑动摩擦和拉应力复合作用下的疲劳裂纹扩展规律,对机械构件寿命预测以及可靠性的优化评估具有重要的指导意义。本文
作为可降解支架用材料,Zn及其合金相较于Fe基合金和Mg基合金具有适宜的降解速率和良好的生物相容性。支架用微管大部分是通过挤压→拉拔和挤压→轧制→拉拔的方法加工成型。挤压是成型管坯的重要塑性加工方法,而且挤压成型的管坯的组织和力学性能对后期支架用微管的性能影响很大。因此,本文选择本课题组研究的具有优异综合力学性能Zn-Mg-Mn合金。针对不同挤压参数制备Zn-Mg-Mn合金管材,利用扫描电镜(SE
硅醇是一种非常昂贵的精细化学品,其在工业上具有非常广泛的应用,可用于有机和医药合成等众多领域,还可作为含硅聚合物的制备原料。采用负载型过渡金属催化剂催化硅烷氧化是一种有效的硅醇制备方法,其具有反应条件温和、副产物无污染等特点。该方法的关键是开发一种简单高效的高活性、高稳定性催化剂。本课题采用微弧氧化技术在镁基底上一步原位制备氧化镁负载钯纳米粒子的Pd/MgO催化剂;采用SEM、TEM、接触角等手段
低活化铁素体/马氏体(RAFM)钢是一种高纯净核级材料,由于其具有良好的抗中子辐照性能和低活化特性及相对成熟的工业技术基础,被普遍认为是未来最有可能实现商业化应用的核聚变堆关键结构材料。本论文采用真空感应熔炼(VIM)工艺制备了含 Ta、Ti、Zr 和 Ti-Zr 的 CLAM 钢(以下简称 Ta-CLAM、Ti-CLAM、Zr-CLAM和TiZr-CLAM),系统地研究了 Ti和Zr代替Ta元素
为应对能源紧张和环境污染问题,工程机械装备的轻量化已经成为未来的重要发展方向。以自卸车为例,应用强度级别更高的钢板以此减薄结构件厚度的方法,是实现轻量化最有效的途径之一。然而单纯靠提高钢板强度达到轻量化的目的,存在一定的局限性,随着结构件厚度的减薄,其刚度逐渐降低,导致结构件在使用过程中容易发生变形,甚至引发安全事故。因此实现装备减重的同时,还要保证结构件刚度,低密度轻量化钢板的开发可以有效地解决