论文部分内容阅读
射频识别(RFID Radio Frequency Identification)是利用射频信号对目标物体进行非接触式自动识别的技术,已经广泛应用于物流跟踪、身份鉴别、防伪等各行各业。超高频射频识别技术(UHF RFID)具有读写距离远、传送速率快、成本低的优势,越来越引起人们的重视,到2017年将成为我国RFID市场的主流。无源UHF RFID标签芯片的一个关键指标就是功耗,更低功耗的标签芯片性能更加优越,可以在更远的距离上工作。因此,本文重点研究UHF RFID芯片数字基带处理器的低功耗设计,具有一定的工程参考价值。首先,本文介绍CMOS功耗产生的基本原理,并结合超高频电子标签芯片的架构和EPC Class-1 Generation2协议规范,分析了超高频电子标签数字基带电路对功耗的特殊考虑,并总结了常用数字集成电路中采用的低功耗设计方法。其次,提出了一种新颖的数字基带处理器的架构,详细分析了完整的数据通路的流程和各子功能模块的协议要求、实现方法以及仿真的结果。不同于其他设计,本文采用了异步电路设计方法,创新性的提出了三级时序门控思想管理数字基带处理器的工作时序,从顶层模块的划分到具体器件的使用,最大程度上减少了冗余翻转降低了功耗。并在此时序架构基础上,加入了复用、异步计数器、降低模块时钟频率、独热编码计数器、双沿设计的方法进一步优化了功耗。最终在1.8V工艺库下仿真的峰值功耗不超过6.24μW,加入三级门控后的功耗相比之前降低了50%以上。再次,采用Synopsys的EDA工具(Design Compiler,IC Compiler,Prime Time)完成了逻辑综合和后端的物理实现。本文介绍了逻辑综合和后端实现的流程,结合本设计分析了后端低功耗约束脚本的编写,满足了时序的要求和版图的验证。最后,搭建了FPGA验证平台对设计进行了FPGA验证,并在SMIC 0.18μm库下成功流片。本文给出了实物的照片和完整的测试,实测的结果满足协议的要求,整个标签灵敏度为-14.5d Bm。