【摘 要】
:
泛函方程的稳定性问题源自Ulam在1940年提出的关于群同态的稳定性问题:给定一个群(G1,*)和一个度量群(G2,·,d),其中d(·,·)为一个度量.给定一个ε>0,存在一个δ>0使得如果f:G1→G2为一个映射且对所有的X,y∈G1均有d(f(x*y),f(x).f(y))<δ.是否存在一个同态9:G1→G2使得对所有的x∈G1,d(f(x),g(x))<ε?1941年,D.H.Hyers解
论文部分内容阅读
泛函方程的稳定性问题源自Ulam在1940年提出的关于群同态的稳定性问题:给定一个群(G1,*)和一个度量群(G2,·,d),其中d(·,·)为一个度量.给定一个ε>0,存在一个δ>0使得如果f:G1→G2为一个映射且对所有的X,y∈G1均有d(f(x*y),f(x).f(y))<δ.是否存在一个同态9:G1→G2使得对所有的x∈G1,d(f(x),g(x))<ε?1941年,D.H.Hyers解决了Banach空间上可加映射的稳定性问题.在接下来的几十年里,许多数学家对各种不同的泛函方程的稳定性进行了系统的研究,例如指数方程、二次泛函方程、三次泛函方程以及广义可加的泛函方程等.1978年,Th.M.Rassias解决了线性映射在Banach空间的稳定性问题;2010年,M.Eshaghi Gordgi和M.B.Savadkouhi解决了三次四次混合泛函方程的随机稳定性问题,M.Mohamadi解决了可加二次四次混合泛函方程的随机稳定性问题.本文共分为三章:在第一章中,我们简要介绍和随机赋范空间有关的预备知识.在第二章,我们主要研究可加四次泛函方程f(2x+y)+f(2x-y)=4[f(x+y)+f(x-y)]-3/7(f(2y)-2f(y))+2f(2x)-8f(x)在随机赋范空间中的稳定性的问题.在第三章中,我们主要研究可加二次三次四次混合泛函方程f(x+2y)+f(x-2y)=4[f(x+y)+f(x-y)]+f(4y)-4f(3y)+6f(2y)-4f(y)-6f(x)在随机赋范空间中的稳定性问题.
其他文献
本文共分四节.第一节为本文的引言.在第二节中,我们先介绍了微分几何学中图形及其凸性的一些基本知识,然后简要叙述了函数凸水平集的概念,推导出了水平集的曲率矩阵.最后,列出了几个有关极大值原理的定理.第三节为主要定理证明之前的准备.基于对相关文章的参考,我们主要为定理的证明完成了一些具体的计算工作,主要的技巧包括重组二阶和三阶导数项以及(?)的一阶导数条件的利用.之后,我们介绍了两个引理.第四节为本文
泛函方程的稳定性问题源自Ulam在1940年提出的关于群同态的稳定性问题(见[1]):给定一个群(G1,*)和一个度量群(G2,·,d),其中d(·,·)为一个度量.给定一个ε>0,存在一个δ>0使得如果f:G1→G2为一个映射且对所有的x,y∈G1均有d(f(x*y),f(x)·f(y))<δ.是否存在一个同态9:G1→G2使得对所有的x∈G1,d(f(x),g(x))<ε?1941年,D. H
本文主要研究算子代数的局部(a,β)导子与(α,β)导子的之间的关系.全文共分五节.第一节是引言和预备知识.第二节证明了矩阵代数Mn(C)到其Banach-双模内的每个局部(α,β)导子都是(a,β)导子,进而也是(α,β)内导子,其中a,β为Mn(C)上的线性映射.第三节证明了交换冯诺依曼代数上的每个有界局部(α,β)导子是(α,β)导子,其中α,β是该交换冯诺依曼代数上的有界线性映射.与此同时
研究背景和研究目的:在海洋中大约有300种的藻类可以引起赤潮,其中有80种左右可产生毒素。这些毒素可以通过鱼类、贝类等海洋生物的富集传递作用引起人类中毒,对人类健康形成了潜在威胁。因此许多国家都建立了赤潮检测体系,并对赤潮藻毒素的毒性作用机制及检测方法做了一系列的研究,取得了重大进展。然而,迄今为止,对于利马原甲藻等有害赤潮藻所产生等藻毒素对于小鼠细胞的细胞内部结构、增殖和凋亡的的影响的研究还很少
城市化、工业化发展带来巨大经济效益的背后是我国部分传统村落在此过程中日渐衰亡的严峻形势。为拯救这笔珍贵的人类文化遗产,2012年以来,国家颁布了多项传统村落保护政策和措施,但是传统村落如何转型、向何处转型仍是待解的难题。屿北村是浙江省楠溪江上游的一个典型传统村落,本文以其为个案、采用社会结构理论作为分析基础,研究了这个村落从建村至今经历的两次大的转型,目的是探讨传统村落的转型发展与其社会结构的关系
本文共分三节.第一节为本文的引言,同时给出了主要定理:设Ω是R2中的光滑有界区域,并且u∈C4(Ω)∩C2(Ω),u是椭圆方程Δu=2u2|▽u|2在Ω中的一个解,假定对于x∈Ω,有|▽u|≠0,u的水平集关于▽u是严格凸的,则函数ψ=k及φ=e-2uk在(?)Ω达到它们的极小值.其中,k为水平集的曲率.第二节为本文的预备知识.介绍了经典微分几何中水平集凸性的一些基本概念,给出了定理证明过程中所涉
泛函方程的稳定性问题源自Ulam在1940年提出的关于群同态的稳定性问题:给定一个群(G1,*)和一个度量群(G2,·,d),其中d(·,·)为G2上的一个度量.给定一个ε>0,存在一个δ>0使得f:G1→G2为一个映射且对所有的x,y∈G1均有d(f(x*y).f(x)·f(y))<δ是否存在一个同态g:G1→G2使得对所有的x∈G1,d(f(x),g(x))<ε(?)1941年,D. H. H
文章简要分析了下游防冲槽冲坑形成原因,利用走航式ADCP(声学多普勒流速剖面仪)断面观测技术确定冲坑位置及大小及复核抛石效果。此技术具有操作简单、精度较高和绘制图形快等特点,为前期防冲槽的维修方案的制定和后期检验加固维修效果提供了可靠的数据和图像支持。
子范畴的反变有限性与表示论,Torsion理论和倾斜理论都有着非常紧密的关系.本文的主要目的是讨论p∞(A)以及Gpd∞(A)的反变有限性.本文在讨论了对偶扩张和倾斜理论的基础上,讨论了投射维数有限模以及Gorenstein投射维数有限的模构成的子范畴的反变有限性之间的关系,给出了相关的结果,并对给出的结果做出了证明.本文共分成四个部分.前两部分介绍了本文的背景和一些基本的知识,第三、四部分给出了
泛函方程的稳定性问题源自Ulam在1940年提出的关于群同态的稳定性问题:给定一个群(G1,*)和一个度量群(G2,·,d),其中d(·,·)为一个度量.给定一个ε>0,存在一个δ>0使得如果f:G1→G2为一个映射且对所有的x,y∈G1均有d(f(x*y),f(x).f(y))<δ.是否存在一个同态g:G1→G2使得对所有的x∈G1,d(f(x),g(x))<ε?1941年,D.H.Hyers解